BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33790808)

  • 1. How Do Red Blood Cells Die?
    Thiagarajan P; Parker CJ; Prchal JT
    Front Physiol; 2021; 12():655393. PubMed ID: 33790808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation.
    Khandelwal S; van Rooijen N; Saxena RK
    Transfusion; 2007 Sep; 47(9):1725-32. PubMed ID: 17725740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of lactadherin in the clearance of phosphatidylserine-expressing red blood cells.
    Dasgupta SK; Abdel-Monem H; Guchhait P; Nagata S; Thiagarajan P
    Transfusion; 2008 Nov; 48(11):2370-6. PubMed ID: 18647368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibodies to Senescent Antigen and C3 Are Not Required for Normal Red Blood Cell Lifespan in a Murine Model.
    Hudson KE; de Wolski K; Kapp LM; Richards AL; Schniederjan MJ; Zimring JC
    Front Immunol; 2017; 8():1425. PubMed ID: 29163500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms tagging senescent red blood cells for clearance in healthy humans.
    Lutz HU; Bogdanova A
    Front Physiol; 2013 Dec; 4():387. PubMed ID: 24399969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes.
    Schroit AJ; Madsen JW; Tanaka Y
    J Biol Chem; 1985 Apr; 260(8):5131-8. PubMed ID: 3988747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review.
    Bratosin D; Mazurier J; Tissier JP; Estaquier J; Huart JJ; Ameisen JC; Aminoff D; Montreuil J
    Biochimie; 1998 Feb; 80(2):173-95. PubMed ID: 9587675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in human red blood cells during aging in vivo.
    Shinozuka T
    Keio J Med; 1994 Sep; 43(3):155-63. PubMed ID: 7967311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing of red blood cells with decreased membrane deformability by the human spleen.
    Safeukui I; Buffet PA; Deplaine G; Perrot S; Brousse V; Sauvanet A; Aussilhou B; Dokmak S; Couvelard A; Cazals-Hatem D; Mercereau-Puijalon O; Milon G; David PH; Mohandas N
    Blood Adv; 2018 Oct; 2(20):2581-2587. PubMed ID: 30305267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of biochemical changes during in vivo erythrocyte senescence in the dog.
    Rettig MP; Low PS; Gimm JA; Mohandas N; Wang J; Christian JA
    Blood; 1999 Jan; 93(1):376-84. PubMed ID: 9864184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role of phosphatidylserine externalization in clearance of erythrocytes exposed to stress but not in eliminating aging populations of erythrocyte in mice.
    Khandelwal S; Saxena RK
    Exp Gerontol; 2008 Aug; 43(8):764-70. PubMed ID: 18556166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular dehydration and immunoglobulin binding in senescent neonatal erythrocytes.
    Lane PA; Galili U; Iarocci TA; Shew RL; Mentzer WC
    Pediatr Res; 1988 Mar; 23(3):288-92. PubMed ID: 3353175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naturally occurring human anti-band 3 autoantibodies accelerate clearance of erythrocytes in guinea pigs.
    Giger U; Sticher B; Naef R; Burger R; Lutz HU
    Blood; 1995 Apr; 85(7):1920-8. PubMed ID: 7703495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of phosphatidylserine distribution in human red blood cells during the process of loading sugars.
    Quan GB; Liu MX; Ren SP; Zhang JG; Han Y
    Cryobiology; 2006 Aug; 53(1):107-18. PubMed ID: 16762335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of phosphatidylserine exposure in the recognition and phagocytosis of uremic erythrocytes.
    Bonomini M; Sirolli V; Reale M; Arduini A
    Am J Kidney Dis; 2001 Apr; 37(4):807-14. PubMed ID: 11273881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolysis in the spleen drives erythrocyte turnover.
    Klei TRL; Dalimot J; Nota B; Veldthuis M; Mul FPJ; Rademakers T; Hoogenboezem M; Nagelkerke SQ; van IJcken WFJ; Oole E; Svendsen P; Moestrup SK; van Alphen FPJ; Meijer AB; Kuijpers TW; van Zwieten R; van Bruggen R
    Blood; 2020 Oct; 136(14):1579-1589. PubMed ID: 32777816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical theory of erythrocyte aging.
    Tang TK
    J Formos Med Assoc; 1997 Oct; 96(10):779-83. PubMed ID: 9343976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell life span in the ovine fetus.
    Brace RA; Langendörfer C; Song TB; Mock DM
    Am J Physiol Regul Integr Comp Physiol; 2000 Oct; 279(4):R1196-204. PubMed ID: 11003984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet aging in vivo is associated with loss of membrane phospholipid asymmetry.
    Pereira J; Palomo I; Ocqueteau M; Soto M; Aranda E; Mezzano D
    Thromb Haemost; 1999 Oct; 82(4):1318-21. PubMed ID: 10544921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging of red blood cells and impaired erythropoiesis following prolonged administration of dichloromethylene diphosphonate containing liposomes in rats.
    Giuliani AL; Graldi G; Veronesi M; Unis L; Previato A; Lorenzini F; Gandini G; Bergamini C; Vanara F; Wiener E; Wickramasinghe SN; Berti G
    Eur J Haematol; 2005 Nov; 75(5):406-16. PubMed ID: 16191091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.