BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 33790906)

  • 1. Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy.
    Chen S; Lai SWT; Brown CE; Feng M
    Front Immunol; 2021; 12():635173. PubMed ID: 33790906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Metabolic Features of Tumor-Associated Macrophages: Opportunities for Immunotherapy?
    Mojsilovic SS; Mojsilovic S; Villar VH; Santibanez JF
    Anal Cell Pathol (Amst); 2021; 2021():5523055. PubMed ID: 34476174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating macrophage polarization in cancer patients: From nanoparticles to human chimeric antigen receptor macrophages.
    Santoni M; Massari F; Montironi R; Battelli N
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188547. PubMed ID: 33932561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing immune checkpoints in myeloid lineage cells for cancer immunotherapy.
    Park SY; Kim IS
    Cancer Lett; 2019 Jun; 452():51-58. PubMed ID: 30910590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors.
    Sloas C; Gill S; Klichinsky M
    Front Immunol; 2021; 12():783305. PubMed ID: 34899748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy.
    Reghu G; Vemula PK; Bhat SG; Narayanan S
    J Biosci; 2024; 49():. PubMed ID: 38864238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer.
    Cao X; Li B; Chen J; Dang J; Chen S; Gunes EG; Xu B; Tian L; Muend S; Raoof M; Querfeld C; Yu J; Rosen ST; Wang Y; Feng M
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33753567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers.
    Inthagard J; Edwards J; Roseweir AK
    Clin Sci (Lond); 2019 Jan; 133(2):181-193. PubMed ID: 30659159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity.
    Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI
    J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationale for anti-CD137 cancer immunotherapy.
    Makkouk A; Chester C; Kohrt HE
    Eur J Cancer; 2016 Feb; 54():112-119. PubMed ID: 26751393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment.
    Shi T; Song X; Wang Y; Liu F; Wei J
    Front Immunol; 2020; 11():683. PubMed ID: 32411132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile.
    Kauder SE; Kuo TC; Harrabi O; Chen A; Sangalang E; Doyle L; Rocha SS; Bollini S; Han B; Sim J; Pons J; Wan HI
    PLoS One; 2018; 13(8):e0201832. PubMed ID: 30133535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy.
    Yang P; Meng M; Zhou Q
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188558. PubMed ID: 33933558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting innate immunity for cancer immunotherapy.
    Yi M; Li T; Niu M; Mei Q; Zhao B; Chu Q; Dai Z; Wu K
    Mol Cancer; 2023 Nov; 22(1):187. PubMed ID: 38008741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Parameter Quantitative Imaging of Tumor Microenvironments Reveals Perivascular Immune Niches Associated With Anti-Tumor Immunity.
    Stoltzfus CR; Sivakumar R; Kunz L; Olin Pope BE; Menietti E; Speziale D; Adelfio R; Bacac M; Colombetti S; Perro M; Gerner MY
    Front Immunol; 2021; 12():726492. PubMed ID: 34421928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends.
    Barros MS; de Araújo ND; Magalhães-Gama F; Pereira Ribeiro TL; Alves Hanna FS; Tarragô AM; Malheiro A; Costa AG
    Front Immunol; 2021; 12():729085. PubMed ID: 34630403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coley's immunotherapy revived: Innate immunity as a link in priming cancer cells for an attack by adaptive immunity.
    Uher O; Caisova V; Hansen P; Kopecky J; Chmelar J; Zhuang Z; Zenka J; Pacak K
    Semin Oncol; 2019; 46(4-5):385-392. PubMed ID: 31739997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic Cells and Their Role in Immunotherapy.
    Gardner A; de Mingo Pulido Á; Ruffell B
    Front Immunol; 2020; 11():924. PubMed ID: 32508825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity.
    Chen SH; Dominik PK; Stanfield J; Ding S; Yang W; Kurd N; Llewellyn R; Heyen J; Wang C; Melton Z; Van Blarcom T; Lindquist KC; Chaparro-Riggers J; Salek-Ardakani S
    J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34599020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors.
    Grosser R; Cherkassky L; Chintala N; Adusumilli PS
    Cancer Cell; 2019 Nov; 36(5):471-482. PubMed ID: 31715131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.