These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33790930)

  • 1.
    Liu Y; Luo W; Linghu Q; Abe F; Hisano H; Sato K; Kamiya Y; Kawaura K; Onishi K; Endo M; Toki S; Hamada H; Nagira Y; Taoka N; Imai R
    Front Plant Sci; 2021; 12():648841. PubMed ID: 33790930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Planta Genome Editing in Commercial Wheat Varieties: Use of TaQsd1 to Lengthen Seed Dormancy.
    Luo W; Liu Y; Imai R
    Methods Mol Biol; 2024; 2830():163-171. PubMed ID: 38977577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat.
    Hamada H; Liu Y; Nagira Y; Miki R; Taoka N; Imai R
    Sci Rep; 2018 Sep; 8(1):14422. PubMed ID: 30258105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in planta biolistic method for stable wheat transformation.
    Hamada H; Linghu Q; Nagira Y; Miki R; Taoka N; Imai R
    Sci Rep; 2017 Sep; 7(1):11443. PubMed ID: 28904403
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Imai R; Hamada H; Liu Y; Linghu Q; Kumagai Y; Nagira Y; Miki R; Taoka N
    Plant Biotechnol (Tokyo); 2020 Jun; 37(2):171-176. PubMed ID: 32821224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2.
    Raffan S; Sparks C; Huttly A; Hyde L; Martignago D; Mead A; Hanley SJ; Wilkinson PA; Barker G; Edwards KJ; Curtis TY; Usher S; Kosik O; Halford NG
    Plant Biotechnol J; 2021 Aug; 19(8):1602-1613. PubMed ID: 33638281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-target genome editing reduces polyphenol oxidase activity in wheat (
    Wold-McGimsey F; Krosch C; Alarcón-Reverte R; Ravet K; Katz A; Stromberger J; Mason RE; Pearce S
    Front Plant Sci; 2023; 14():1247680. PubMed ID: 37786514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient transformation method for genome editing of elite bread wheat cultivars.
    Biswal AK; Hernandez LRB; Castillo AIR; Debernardi JM; Dhugga KS
    Front Plant Sci; 2023; 14():1135047. PubMed ID: 37275249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.
    Liang Z; Chen K; Zhang Y; Liu J; Yin K; Qiu JL; Gao C
    Nat Protoc; 2018 Mar; 13(3):413-430. PubMed ID: 29388938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biolistic Transformation of Wheat.
    Tian B; Navia-Urrutia M; Chen Y; Brungardt J; Trick HN
    Methods Mol Biol; 2019; 1864():117-130. PubMed ID: 30415333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat.
    Wijerathna-Yapa A; Ramtekey V; Ranawaka B; Basnet BR
    Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.).
    Torada A; Koike M; Ikeguchi S; Tsutsui I
    Genome; 2008 Jun; 51(6):426-32. PubMed ID: 18521121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid method for detection of mutations induced by CRISPR/Cas9-based genome editing in common wheat.
    Kamiya Y; Abe F; Mikami M; Endo M; Kawaura K
    Plant Biotechnol (Tokyo); 2020 Jun; 37(2):247-251. PubMed ID: 32821233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues.
    Rasco-Gaunt S; Riley A; Barcelo P; Lazzeri PA
    Plant Cell Rep; 1999 Dec; 19(2):118-127. PubMed ID: 30754736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species.
    Miroshnichenko D; Ashin D; Pushin A; Dolgov S
    BMC Biotechnol; 2018 Oct; 18(1):68. PubMed ID: 30352590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9.
    Howells RM; Craze M; Bowden S; Wallington EJ
    BMC Plant Biol; 2018 Oct; 18(1):215. PubMed ID: 30285624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an efficient and reproducible regeneration system in wheat (
    Kumar R; Mamrutha HM; Kaur A; Venkatesh K; Grewal A; Kumar R; Tiwari V
    Physiol Mol Biol Plants; 2017 Oct; 23(4):945-954. PubMed ID: 29158641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.