These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33791225)

  • 1. Differentiation of Glioma Mimicking Encephalitis and Encephalitis Using Multiparametric MR-Based Deep Learning.
    Wu W; Li J; Ye J; Wang Q; Zhang W; Xu S
    Front Oncol; 2021; 11():639062. PubMed ID: 33791225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study for glioma classification using deep convolutional neural networks.
    Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T
    Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas.
    Gu Z; Dai W; Chen J; Jiang Q; Lin W; Wang Q; Chen J; Gu C; Li J; Ying G; Zhu Y
    BMC Cancer; 2024 Mar; 24(1):350. PubMed ID: 38504164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiating Magnetic Resonance Images of Pyogenic Spondylitis and Spinal Modic Change Using a Convolutional Neural Network.
    Mukaihata T; Maki S; Eguchi Y; Geundong K; Shoda J; Yokota H; Orita S; Shiga Y; Inage K; Furuya T; Ohtori S
    Spine (Phila Pa 1976); 2023 Feb; 48(4):288-294. PubMed ID: 36692159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI.
    Han Y; Yang Y; Shi ZS; Zhang AD; Yan LF; Hu YC; Feng LL; Ma J; Wang W; Cui GB
    Eur J Radiol; 2021 Jan; 134():109467. PubMed ID: 33307462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.
    Aldoj N; Lukas S; Dewey M; Penzkofer T
    Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic efficiency of multi-modal MRI based deep learning with Sobel operator in differentiating benign and malignant breast mass lesions-a retrospective study.
    Tang W; Zhang M; Xu C; Shao Y; Tang J; Gong S; Dong H; Sheng M
    PeerJ Comput Sci; 2023; 9():e1460. PubMed ID: 37547396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Assessment of Acute Ischemic Stroke by Computed Tomography Using Deep Convolutional Neural Networks.
    Lo CM; Hung PH; Lin DT
    J Digit Imaging; 2021 Jun; 34(3):637-646. PubMed ID: 33963421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.
    Xia W; Hu B; Li H; Shi W; Tang Y; Yu Y; Geng C; Wu Q; Yang L; Yu Z; Geng D; Li Y
    J Magn Reson Imaging; 2021 Sep; 54(3):880-887. PubMed ID: 33694250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts.
    Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning.
    Lee J; Wang N; Turk S; Mohammed S; Lobo R; Kim J; Liao E; Camelo-Piragua S; Kim M; Junck L; Bapuraj J; Srinivasan A; Rao A
    Sci Rep; 2020 Nov; 10(1):20331. PubMed ID: 33230285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning.
    Saida T; Mori K; Hoshiai S; Sakai M; Urushibara A; Ishiguro T; Satoh T; Nakajima T
    Pol J Radiol; 2022; 87():e521-e529. PubMed ID: 36250139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SurvNet: A low-complexity convolutional neural network for survival time classification of patients with glioblastoma.
    Lyu Q; Parreno-Centeno M; Papa JP; Öztürk-Isik E; Booth TC; Costen F
    Heliyon; 2024 Jun; 10(12):e32870. PubMed ID: 38988550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI-Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors.
    Jian J; Li Y; Xia W; He Z; Zhang R; Li H; Zhao X; Zhao S; Zhang J; Cai S; Wu X; Gao X; Qiang J
    J Magn Reson Imaging; 2022 Jul; 56(1):173-181. PubMed ID: 34842320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holographic Microwave Image Classification Using a Convolutional Neural Network.
    Wang L
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI.
    Wong LM; King AD; Ai QYH; Lam WKJ; Poon DMC; Ma BBY; Chan KCA; Mo FKF
    Eur Radiol; 2021 Jun; 31(6):3856-3863. PubMed ID: 33241522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments.
    Saida T; Mori K; Hoshiai S; Sakai M; Urushibara A; Ishiguro T; Minami M; Satoh T; Nakajima T
    Cancers (Basel); 2022 Feb; 14(4):. PubMed ID: 35205735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Critical Feeding Tube Malpositions on Radiographs Using Deep Learning.
    Singh V; Danda V; Gorniak R; Flanders A; Lakhani P
    J Digit Imaging; 2019 Aug; 32(4):651-655. PubMed ID: 31073816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.