These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 33791235)
1. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Oh S; Trifonov L; Yadav VD; Barry CE; Boshoff HI Front Cell Infect Microbiol; 2021; 11():611304. PubMed ID: 33791235 [TBL] [Abstract][Full Text] [Related]
2. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery. Ekins S; Freundlich JS; Hobrath JV; Lucile White E; Reynolds RC Pharm Res; 2014 Feb; 31(2):414-35. PubMed ID: 24132686 [TBL] [Abstract][Full Text] [Related]
3. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
4. Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes. Johnson EO; LaVerriere E; Office E; Stanley M; Meyer E; Kawate T; Gomez JE; Audette RE; Bandyopadhyay N; Betancourt N; Delano K; Da Silva I; Davis J; Gallo C; Gardner M; Golas AJ; Guinn KM; Kennedy S; Korn R; McConnell JA; Moss CE; Murphy KC; Nietupski RM; Papavinasasundaram KG; Pinkham JT; Pino PA; Proulx MK; Ruecker N; Song N; Thompson M; Trujillo C; Wakabayashi S; Wallach JB; Watson C; Ioerger TR; Lander ES; Hubbard BK; Serrano-Wu MH; Ehrt S; Fitzgerald M; Rubin EJ; Sassetti CM; Schnappinger D; Hung DT Nature; 2019 Jul; 571(7763):72-78. PubMed ID: 31217586 [TBL] [Abstract][Full Text] [Related]
5. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. Ekins S; Reynolds RC; Franzblau SG; Wan B; Freundlich JS; Bunin BA PLoS One; 2013; 8(5):e63240. PubMed ID: 23667592 [TBL] [Abstract][Full Text] [Related]
6. Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis? Goldman RC Tuberculosis (Edinb); 2013 Nov; 93(6):569-88. PubMed ID: 24119636 [TBL] [Abstract][Full Text] [Related]
7. Novel and revisited approaches in antituberculosis drug discovery. Herrmann J; Rybniker J; Müller R Curr Opin Biotechnol; 2017 Dec; 48():94-101. PubMed ID: 28427007 [TBL] [Abstract][Full Text] [Related]
8. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Evans JC; Mizrahi V Curr Opin Microbiol; 2018 Oct; 45():39-46. PubMed ID: 29482115 [TBL] [Abstract][Full Text] [Related]
9. Antituberculosis activity of the molecular libraries screening center network library. Maddry JA; Ananthan S; Goldman RC; Hobrath JV; Kwong CD; Maddox C; Rasmussen L; Reynolds RC; Secrist JA; Sosa MI; White EL; Zhang W Tuberculosis (Edinb); 2009 Sep; 89(5):354-63. PubMed ID: 19783214 [TBL] [Abstract][Full Text] [Related]
10. Hit Generation in TB Drug Discovery: From Genome to Granuloma. Yuan T; Sampson NS Chem Rev; 2018 Feb; 118(4):1887-1916. PubMed ID: 29384369 [TBL] [Abstract][Full Text] [Related]
11. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
12. Target Discovery for New Antitubercular Drugs Using a Large Dataset of Growth Inhibitors from PubChem. Goldman RC Infect Disord Drug Targets; 2020; 20(3):352-366. PubMed ID: 30520384 [TBL] [Abstract][Full Text] [Related]
13. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis. Bonds AC; Sampson NS Curr Opin Chem Biol; 2018 Jun; 44():39-46. PubMed ID: 29906645 [TBL] [Abstract][Full Text] [Related]
14. The future for early-stage tuberculosis drug discovery. Zuniga ES; Early J; Parish T Future Microbiol; 2015; 10(2):217-29. PubMed ID: 25689534 [TBL] [Abstract][Full Text] [Related]
15. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Singh V; Mizrahi V Drug Discov Today; 2017 Mar; 22(3):503-509. PubMed ID: 27649943 [TBL] [Abstract][Full Text] [Related]
16. In silico analyses for the discovery of tuberculosis drug targets. Chung BK; Dick T; Lee DY J Antimicrob Chemother; 2013 Dec; 68(12):2701-9. PubMed ID: 23838951 [TBL] [Abstract][Full Text] [Related]
17. Hit discovery of Mycobacterium tuberculosis inosine 5'-monophosphate dehydrogenase, GuaB2, inhibitors. Sahu NU; Singh V; Ferraris DM; Rizzi M; Kharkar PS Bioorg Med Chem Lett; 2018 Jun; 28(10):1714-1718. PubMed ID: 29699922 [TBL] [Abstract][Full Text] [Related]
18. The Expanding Diversity of Mycobacterium tuberculosis Drug Targets. Wellington S; Hung DT ACS Infect Dis; 2018 May; 4(5):696-714. PubMed ID: 29412643 [TBL] [Abstract][Full Text] [Related]
19. Improving the tuberculosis drug development pipeline. Evangelopoulos D; McHugh TD Chem Biol Drug Des; 2015 Nov; 86(5):951-60. PubMed ID: 25772393 [TBL] [Abstract][Full Text] [Related]
20. Reactive dirty fragments: implications for tuberculosis drug discovery. Gopal P; Dick T Curr Opin Microbiol; 2014 Oct; 21():7-12. PubMed ID: 25078318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]