These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33791381)

  • 1. Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors.
    Pan D; Liu R; Zheng B; Yuan J; Zeng H; He Z; Luo Z; Qin G; Chen W
    Biomed Res Int; 2021; 2021():8811056. PubMed ID: 33791381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors.
    Liu R; Pan D; Xu Y; Zeng H; He Z; Lin J; Zeng W; Wu Z; Luo Z; Qin G; Chen W
    Eur Radiol; 2022 Feb; 32(2):1371-1383. PubMed ID: 34432121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Jung M; Jungmann PM; Russe MF; Foreman SC; Gassert FG; Gassert FT; Schwaiger BJ; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Eur Radiol; 2022 Sep; 32(9):6247-6257. PubMed ID: 35396665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning model to enhance the classification of primary bone tumors based on incomplete multimodal images in X-ray, CT, and MRI.
    Song L; Li C; Tan L; Wang M; Chen X; Ye Q; Li S; Zhang R; Zeng Q; Xie Z; Yang W; Zhao Y
    Cancer Imaging; 2024 Oct; 24(1):135. PubMed ID: 39390604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT.
    Hong JH; Jung JY; Jo A; Nam Y; Pak S; Lee SY; Park H; Lee SE; Kim S
    Radiology; 2021 Jun; 299(3):626-632. PubMed ID: 33787335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated classification of benign and malignant lesions in
    Perk T; Bradshaw T; Chen S; Im HJ; Cho S; Perlman S; Liu G; Jeraj R
    Phys Med Biol; 2018 Nov; 63(22):225019. PubMed ID: 30457118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study.
    He Y; Pan I; Bao B; Halsey K; Chang M; Liu H; Peng S; Sebro RA; Guan J; Yi T; Delworth AT; Eweje F; States LJ; Zhang PJ; Zhang Z; Wu J; Peng X; Bai HX
    EBioMedicine; 2020 Dec; 62():103121. PubMed ID: 33232868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors.
    Yin P; Mao N; Chen H; Sun C; Wang S; Liu X; Hong N
    Front Oncol; 2020; 10():564725. PubMed ID: 33178593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
    Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J
    Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors.
    Shao S; Mao N; Liu W; Cui J; Xue X; Cheng J; Zheng N; Wang B
    J Xray Sci Technol; 2020; 28(4):799-808. PubMed ID: 32538891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI.
    Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W
    Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI radiomics-based machine-learning classification of bone chondrosarcoma.
    Gitto S; Cuocolo R; Albano D; Chianca V; Messina C; Gambino A; Ugga L; Cortese MC; Lazzara A; Ricci D; Spairani R; Zanchetta E; Luzzati A; Brunetti A; Parafioriti A; Sconfienza LM
    Eur J Radiol; 2020 Jul; 128():109043. PubMed ID: 32438261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osseous Tumor Reporting and Data System-Multireader Validation Study.
    Chhabra A; Gupta A; Thakur U; Pezeshk P; Dettori N; Callan A; Xi Y; Weatherall P
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):571-585. PubMed ID: 34270485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clear cell chondrosarcoma: radiographic, computed tomographic, and magnetic resonance findings in 34 patients with pathologic correlation.
    Collins MS; Koyama T; Swee RG; Inwards CY
    Skeletal Radiol; 2003 Dec; 32(12):687-94. PubMed ID: 14530882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malignant transformation in monostotic fibrous dysplasia: clinical features, imaging features, outcomes in 10 patients, and review.
    Qu N; Yao W; Cui X; Zhang H
    Medicine (Baltimore); 2015 Jan; 94(3):e369. PubMed ID: 25621678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent Machine Learning Models to Diagnose Suspicious Thoracic Lesions Leveraging CT Guided Biopsy Data.
    Lindsay WD; Sachs N; Gee JC; Mortani Barbosa EJ
    Acad Radiol; 2022 Feb; 29 Suppl 2():S156-S164. PubMed ID: 34373194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images.
    Fleury E; Marcomini K
    Eur Radiol Exp; 2019 Aug; 3(1):34. PubMed ID: 31385114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.