These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 337915)
1. Neurophysiological assessment of site specific effects of chronic morphine administration in freely behaving rats. McClung RE; Burks TF; Dafny N Arch Int Pharmacodyn Ther; 1977 Sep; 229(1):144-56. PubMed ID: 337915 [TBL] [Abstract][Full Text] [Related]
2. Effects of morphine on sensory-evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, and pineal body. Dafny N; Marchand J; McClung R; Salamy J; Sands S; Wachtendorf H; Burks TF J Neurosci Res; 1980; 5(5):399-412. PubMed ID: 7441794 [TBL] [Abstract][Full Text] [Related]
3. Dose effects of morphine on the spontaneous unit activity recorded from the thalamus, hypothalamus, septum, hippocampus, reticular formation, central gray, and caudate nucleus. Dafny N; Burks TF; Bergmann F J Neurosci Res; 1983; 9(2):115-26. PubMed ID: 6842623 [TBL] [Abstract][Full Text] [Related]
4. Neurophysiological evidence for tolerance and dependence on opiates: simultaneous multiunit recordings from septum, thalamus, and caudate nucleus. Dafny N J Neurosci Res; 1980; 5(4):339-49. PubMed ID: 7191906 [TBL] [Abstract][Full Text] [Related]
5. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Lane DA; Patel PA; Morgan MM Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the involvement of the caudal region of the periaqueductal gray in a subset of morphine-induced alterations of immune status. Lysle DT; Hoffman KE; Dykstra LA J Pharmacol Exp Ther; 1996 Jun; 277(3):1533-40. PubMed ID: 8667220 [TBL] [Abstract][Full Text] [Related]
7. Characterization of unit activity recorded from septum, thalamus, and caudate following incremental opiate treatment. Dafny N; Rigor BM J Neurosci Res; 1980; 5(2):117-27. PubMed ID: 7401192 [TBL] [Abstract][Full Text] [Related]
8. Single-dose tolerance to morphine hypothermia in the rat: differentiation of acute from long-term tolerance. Rosenfeld GC; Burks TF J Pharmacol Exp Ther; 1977 Sep; 202(3):654-9. PubMed ID: 197229 [TBL] [Abstract][Full Text] [Related]
9. Effects of intracerebral morphine and enkephalins on the caudate-EEG spindle burst. Kamata K; Kameyama T Arch Int Pharmacodyn Ther; 1985 May; 275(1):68-77. PubMed ID: 4026463 [TBL] [Abstract][Full Text] [Related]
10. [Changes in stimulation analgesia during chronic morphine administration]. Morozova AS; Zvartau EE Farmakol Toksikol; 1985; 48(4):61-4. PubMed ID: 4043366 [TBL] [Abstract][Full Text] [Related]
11. Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands. Boronat MA; Olmos G; GarcĂa-Sevilla JA Br J Pharmacol; 1998 Sep; 125(1):175-85. PubMed ID: 9776358 [TBL] [Abstract][Full Text] [Related]
12. Tolerance development to the biphasic effects of morphine on locomotor activity and brain acetylcholine in the rat. Vasko MR; Domino EF J Pharmacol Exp Ther; 1978 Dec; 207(3):848-58. PubMed ID: 731435 [TBL] [Abstract][Full Text] [Related]
13. Sensory-evoked potentials recordings from the ventral tegmental area, nucleus accumbens, prefrontal cortex, and caudate nucleus and locomotor activity are modulated in dose-response characteristics by methylphenidate. Yang PB; Swann AC; Dafny N Brain Res; 2006 Feb; 1073-1074():164-74. PubMed ID: 16473326 [TBL] [Abstract][Full Text] [Related]
14. Influence of L-tryptophan on morphine analgesia, tolerance and physical dependence. Ho IK; Brase DA; Loh HH; Way EL J Pharmacol Exp Ther; 1975 Apr; 193(1):35-43. PubMed ID: 124349 [TBL] [Abstract][Full Text] [Related]
15. Co-administration of ultra-low dose naloxone attenuates morphine tolerance in rats via attenuation of NMDA receptor neurotransmission and suppression of neuroinflammation in the spinal cords. Lin SL; Tsai RY; Shen CH; Lin FH; Wang JJ; Hsin ST; Wong CS Pharmacol Biochem Behav; 2010 Aug; 96(2):236-45. PubMed ID: 20478329 [TBL] [Abstract][Full Text] [Related]
16. Dexamethasone mimics the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia and compensates for morphine induced changes in G proteins gene expression. Javan M; Kazemi B; Ahmadiani A; Motamedi F Brain Res; 2006 Aug; 1104(1):73-9. PubMed ID: 16828064 [TBL] [Abstract][Full Text] [Related]
17. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Mika J; Wawrzczak-Bargiela A; Osikowicz M; Makuch W; Przewlocka B Brain Behav Immun; 2009 Jan; 23(1):75-84. PubMed ID: 18684397 [TBL] [Abstract][Full Text] [Related]
18. Intermittent dosing prolongs tolerance to the antinociceptive effect of morphine microinjection into the periaqueductal gray. Morgan MM; Tierney BW; Ingram SL Brain Res; 2005 Oct; 1059(2):173-8. PubMed ID: 16182261 [TBL] [Abstract][Full Text] [Related]
19. Augmentation of central and peripheral morphine analgesia by desipramine. Ossipov MH; Malseed RT; Goldstein FJ Arch Int Pharmacodyn Ther; 1982 Oct; 259(2):222-9. PubMed ID: 7181579 [TBL] [Abstract][Full Text] [Related]
20. Tolerance induced by non-opioid analgesic microinjections into rat's periaqueductal gray and nucleus raphe. Tsiklauri N; Nozadze I; Gurtskaia G; Berishvili V; Abzianidze E; Tsagareli M Georgian Med News; 2010 Mar; (180):47-55. PubMed ID: 20413817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]