These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Photodynamic Therapy Mediated by Upconversion Nanoparticles to Reduce Glial Scar Formation and Promote Hindlimb Functional Recovery After Spinal Cord Injury in Rats. Liu Y; Ban DX; Ma C; Zhang ZG; Zhang JY; Gao SJ; Feng SQ J Biomed Nanotechnol; 2016 Nov; 12(11):2063-75. PubMed ID: 29364623 [TBL] [Abstract][Full Text] [Related]
27. Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro. Zhang J; Sun J; Zheng Q; Hu X; Wang Z; Liang Z; Li K; Song J; Ding T; Shen X; Zhang J; Qiao L J Cell Mol Med; 2020 Jan; 24(1):476-487. PubMed ID: 31667932 [TBL] [Abstract][Full Text] [Related]
28. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Oliveri RS; Bello S; Biering-Sørensen F Neurobiol Dis; 2014 Feb; 62():338-53. PubMed ID: 24148857 [TBL] [Abstract][Full Text] [Related]
29. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
30. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952 [TBL] [Abstract][Full Text] [Related]
31. New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Rochkind S; Ouaknine GE Neurol Res; 1992 Mar; 14(1):2-11. PubMed ID: 1351254 [TBL] [Abstract][Full Text] [Related]
32. Low level laser therapy (Classes I, II and III) for treating osteoarthritis. Brosseau L; Welch V; Wells G; deBie R; Gam A; Harman K; Morin M; Shea B; Tugwell P Cochrane Database Syst Rev; 2003; (2):CD002046. PubMed ID: 12804422 [TBL] [Abstract][Full Text] [Related]
33. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. Hassannejad Z; Zadegan SA; Vaccaro AR; Rahimi-Movaghar V; Sabzevari O Injury; 2019 Feb; 50(2):278-285. PubMed ID: 30595411 [TBL] [Abstract][Full Text] [Related]
34. The influence of low-level laser irradiation on spinal cord injuries following ischemia-reperfusion in rats. Sotoudeh A; Jahanshahi A; Zareiy S; Darvishi M; Roodbari N; Bazzazan A Acta Cir Bras; 2015 Sep; 30(9):611-6. PubMed ID: 26465105 [TBL] [Abstract][Full Text] [Related]
35. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice. Yamada H; Ito D; Oki Y; Kitagawa M; Matsumoto T; Watari T; Kano K Biochem Biophys Res Commun; 2014 Nov; 454(2):341-6. PubMed ID: 25451251 [TBL] [Abstract][Full Text] [Related]
36. Transplantation of preconditioned schwann cells in peripheral nerve grafts after contusion in the adult spinal cord. Improvement of recovery in a rat model. Rasouli A; Bhatia N; Suryadevara S; Cahill K; Gupta R J Bone Joint Surg Am; 2006 Nov; 88(11):2400-10. PubMed ID: 17079397 [TBL] [Abstract][Full Text] [Related]
37. Effects of photobiomodulation combined with MSCs transplantation on the repair of spinal cord injury in rat. Chen H; Wang Y; Tu W; Wang H; Yin H; Sha H; Li Y J Cell Physiol; 2021 Feb; 236(2):921-930. PubMed ID: 32583437 [TBL] [Abstract][Full Text] [Related]
38. Transoral Low-Level Laser Therapy Via a Cylindrical Device to Treat Oral Ulcers in a Rodent Model. Lee HS; Lee Y; Jeong U; Oh S; Hwang CW; Kang HW Lasers Surg Med; 2020 Sep; 52(7):647-652. PubMed ID: 31820466 [TBL] [Abstract][Full Text] [Related]
39. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547 [TBL] [Abstract][Full Text] [Related]
40. Exploring the potential of RhoA inhibitors to improve exercise-recoverable spinal cord injury: A systematic review and meta-analysis. Luo M; Li YQ; Lu YF; Wu Y; Liu R; Zheng YR; Yin M J Chem Neuroanat; 2021 Jan; 111():101879. PubMed ID: 33197553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]