These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 33792045)
41. Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest. Heberling JM; Mason NWH PLoS One; 2018; 13(5):e0196746. PubMed ID: 29718966 [TBL] [Abstract][Full Text] [Related]
42. Overwintering evergreen oaks reverse typical relationships between leaf traits in a species spectrum. Harayama H; Ishida A; Yoshimura J R Soc Open Sci; 2016 Jul; 3(7):160276. PubMed ID: 27493781 [TBL] [Abstract][Full Text] [Related]
43. Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Tomlinson KW; Poorter L; Bongers F; Borghetti F; Jacobs L; van Langevelde F Ann Bot; 2014 Aug; 114(2):315-24. PubMed ID: 24958787 [TBL] [Abstract][Full Text] [Related]
44. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Weng E; Farrior CE; Dybzinski R; Pacala SW Glob Chang Biol; 2017 Jun; 23(6):2482-2498. PubMed ID: 27782353 [TBL] [Abstract][Full Text] [Related]
45. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Croft H; Chen JM; Luo X; Bartlett P; Chen B; Staebler RM Glob Chang Biol; 2017 Sep; 23(9):3513-3524. PubMed ID: 27976452 [TBL] [Abstract][Full Text] [Related]
46. Plant economics spectrum governs leaf nitrogen and phosphorus resorption in subtropical transitional forests. Ma B; Ge J; Zhao C; Xu W; Xu K; Xie Z BMC Plant Biol; 2024 Aug; 24(1):764. PubMed ID: 39123124 [TBL] [Abstract][Full Text] [Related]
47. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. Lusk CH; Onoda Y; Kooyman R; Gutiérrez-Girón A New Phytol; 2010 Apr; 186(2):429-38. PubMed ID: 20202128 [TBL] [Abstract][Full Text] [Related]
48. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach. Kamoske AG; Dahlin KM; Serbin SP; Stark SC Ecol Appl; 2021 Mar; 31(2):e02230. PubMed ID: 33015908 [TBL] [Abstract][Full Text] [Related]
49. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Rosati A; Esparza G; DeJong TM; Pearcy RW Tree Physiol; 1999 Mar; 19(3):173-180. PubMed ID: 12651580 [TBL] [Abstract][Full Text] [Related]
50. Seasonal variation of leaf ecophysiological traits within the canopy of Quercus petraea (Matt.) Liebl. trees. Szöllösi E; Oláh V; Kanalas P; Kis J; Fenyvesi A; Mészáros I Acta Biol Hung; 2010; 61 Suppl():172-88. PubMed ID: 21565775 [TBL] [Abstract][Full Text] [Related]
51. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. Slot M; Winter K New Phytol; 2017 May; 214(3):1103-1117. PubMed ID: 28211583 [TBL] [Abstract][Full Text] [Related]
52. Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA). Fajardo A; Siefert A Ann Bot; 2016 Dec; 118(7):1307-1315. PubMed ID: 27604280 [TBL] [Abstract][Full Text] [Related]
53. Comparative physiology of canopy tree leaves in evergreen and deciduous forests in lowland Thailand. Ishida A; Yamaji K; Nakano T; Ladpala P; Popradit A; Yoshimura K; Saiki ST; Maeda T; Yoshimura J; Koyama K; Diloksumpun S; Marod D Sci Data; 2023 Sep; 10(1):601. PubMed ID: 37684226 [TBL] [Abstract][Full Text] [Related]
54. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Harley P; Guenther A; Zimmerman P Tree Physiol; 1996; 16(1_2):25-32. PubMed ID: 14871744 [TBL] [Abstract][Full Text] [Related]
55. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? Hallik L; Niinemets Ü; Wright IJ New Phytol; 2009; 184(1):257-274. PubMed ID: 19674334 [TBL] [Abstract][Full Text] [Related]
56. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. He P; Wright IJ; Zhu S; Onoda Y; Liu H; Li R; Liu X; Hua L; Oyanoghafo OO; Ye Q New Phytol; 2019 Jul; 223(2):607-618. PubMed ID: 30887533 [TBL] [Abstract][Full Text] [Related]
57. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest. Asao S; Bedoya-Arrieta R; Ryan MG Tree Physiol; 2015 Feb; 35(2):148-59. PubMed ID: 25597756 [TBL] [Abstract][Full Text] [Related]
58. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. de la Riva EG; Olmo M; Poorter H; Ubera JL; Villar R PLoS One; 2016; 11(2):e0148788. PubMed ID: 26867213 [TBL] [Abstract][Full Text] [Related]
59. Leaves of pioneer and later-successional trees have similar lifetime carbon gain in tropical secondary forest. Selaya NG; Anten NP Ecology; 2010 Apr; 91(4):1102-13. PubMed ID: 20462124 [TBL] [Abstract][Full Text] [Related]
60. Leaf Economics of Early- and Late-Successional Plants. Lichstein JW; Peterson BT; Langebrake J; McKinley SA Am Nat; 2021 Sep; 198(3):347-359. PubMed ID: 34403314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]