These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33792207)

  • 1. Identification of high-dimensional omics-derived predictors for tumor growth dynamics using machine learning and pharmacometric modeling.
    Zwep LB; Duisters KLW; Jansen M; Guo T; Meulman JJ; Upadhyay PJ; van Hasselt JGC
    CPT Pharmacometrics Syst Pharmacol; 2021 Apr; 10(4):350-361. PubMed ID: 33792207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational pharmacokinetic-pharmacodynamic modeling from nonclinical to clinical development: a case study of anticancer drug, crizotinib.
    Yamazaki S
    AAPS J; 2013 Apr; 15(2):354-66. PubMed ID: 23250669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Pharmacometric Analysis in the Design of Clinical Pharmacology Studies for Biosimilar Development.
    Zhu P; Sy SKB; Skerjanec A
    AAPS J; 2018 Mar; 20(2):40. PubMed ID: 29516330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lifespan based pharmacokinetic-pharmacodynamic model of tumor growth inhibition by anticancer therapeutics.
    Mo G; Gibbons F; Schroeder P; Krzyzanski W
    PLoS One; 2014; 9(10):e109747. PubMed ID: 25333487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pan-cancer evaluation of gene expression and somatic alteration data for cancer prognosis prediction.
    Zheng X; Amos CI; Frost HR
    BMC Cancer; 2021 Sep; 21(1):1053. PubMed ID: 34563154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data.
    Xu Y; Dong Q; Li F; Xu Y; Hu C; Wang J; Shang D; Zheng X; Yang H; Zhang C; Shao M; Meng M; Xiong Z; Li X; Zhang Y
    J Transl Med; 2019 Aug; 17(1):255. PubMed ID: 31387579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic data analysis workflows for tumors from patient-derived xenografts (PDXs): challenges and guidelines.
    Woo XY; Srivastava A; Graber JH; Yadav V; Sarsani VK; Simons A; Beane G; Grubb S; Ananda G; Liu R; Stafford G; Chuang JH; Airhart SD; Karuturi RKM; George J; Bult CJ
    BMC Med Genomics; 2019 Jul; 12(1):92. PubMed ID: 31262303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Pharmacology Models for Cancer Target Research.
    Chen D; An X; Ouyang X; Cai J; Zhou D; Li QX
    Methods Mol Biol; 2019; 1953():183-211. PubMed ID: 30912023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival Prolongation Index as a Novel Metric to Assess Anti-Tumor Activity in Xenograft Models.
    Chandra F; Zaks L; Zhu A
    AAPS J; 2019 Jan; 21(2):16. PubMed ID: 30627814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis.
    Sardu ML; Poggesi I; De Nicolao G
    J Pharmacokinet Pharmacodyn; 2015 Dec; 42(6):611-26. PubMed ID: 26209955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Pharmacometric Modeling, a Novel Paradigm for Integrating Machine Learning Algorithms: A Case Study of Metabolomic Biomarkers.
    McComb M; Ramanathan M
    Clin Pharmacol Ther; 2020 Jun; 107(6):1343-1351. PubMed ID: 31863460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling.
    Chen B; Wei W; Ma L; Yang B; Gill RM; Chua MS; Butte AJ; So S
    Gastroenterology; 2017 Jun; 152(8):2022-2036. PubMed ID: 28284560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Machine Learning for Tumor Growth Inhibition - Overall Survival Modeling Platform.
    Chan P; Zhou X; Wang N; Liu Q; Bruno R; Jin JY
    CPT Pharmacometrics Syst Pharmacol; 2021 Jan; 10(1):59-66. PubMed ID: 33280255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-specific identification of multi-omics features for pan-cancer drug response prediction.
    Zhao Z; Wang S; Zucknick M; Aittokallio T
    iScience; 2022 Aug; 25(8):104767. PubMed ID: 35992090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.