These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33792738)

  • 1. Comparative genomic and secretomic characterisation of endophytic Bacillus velezensis LC1 producing bioethanol from bamboo lignocellulose.
    Tang H; Zheng L; Li Y; Lei L; Yang X; Luo C
    Arch Microbiol; 2021 Aug; 203(6):3089-3099. PubMed ID: 33792738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome sequencing of gut symbiotic
    Li Y; Lei L; Zheng L; Xiao X; Tang H; Luo C
    Biotechnol Biofuels; 2020; 13():34. PubMed ID: 32140179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of NaHCO
    Chen L; Chen W; Zheng B; Yu W; Zheng L; Qu Z; Yan X; Wei B; Zhao Z
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):6077-6094. PubMed ID: 35976426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomic and transcriptome analysis of Bacillus velezensis CL-4 fermented corn germ meal.
    Chen L; Qu Z; Yu W; Zheng L; Qiao H; Wang D; Wei B; Zhao Z
    AMB Express; 2023 Jan; 13(1):10. PubMed ID: 36683079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Draft Genome Sequence of Thermophilic Bacillus sp. TYF-LIM-B05 Directly Producing Ethanol from Various Carbon Sources Including Lignocellulose.
    Fan L; Li M; Li Y; Fan X; Liu Y; Lv Y
    Curr Microbiol; 2020 Mar; 77(3):491-499. PubMed ID: 31832840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genome analysis of
    Chen L; Gu W; Xu HY; Yang GL; Shan XF; Chen G; Kang YH; Wang CF; Qian AD
    3 Biotech; 2018 May; 8(5):253. PubMed ID: 29765811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative secretomic analysis of lignocellulose degradation by Lentinula edodes grown on microcrystalline cellulose, lignosulfonate and glucose.
    Cai Y; Gong Y; Liu W; Hu Y; Chen L; Yan L; Zhou Y; Bian Y
    J Proteomics; 2017 Jun; 163():92-101. PubMed ID: 28483534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and metabolic features of the Bacillus amyloliquefaciens group- B. amyloliquefaciens, B. velezensis, and B. siamensis- revealed by pan-genome analysis.
    Chun BH; Kim KH; Jeong SE; Jeon CO
    Food Microbiol; 2019 Feb; 77():146-157. PubMed ID: 30297045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Bacillus spp. with potential for 2,3-butanediol production from biomass.
    Petrova P; Petlichka S; Petrov K
    J Biosci Bioeng; 2020 Jul; 130(1):20-28. PubMed ID: 32169317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1.
    Ma J; Zhang K; Liao H; Hector SB; Shi X; Li J; Liu B; Xu T; Tong C; Liu X; Zhu Y
    Biotechnol Biofuels; 2016; 9():25. PubMed ID: 26839588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing.
    Zerva A; Savvides AL; Katsifas EA; Karagouni AD; Hatzinikolaou DG
    Bioresour Technol; 2014 Jun; 162():294-9. PubMed ID: 24759646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.
    Tabata T; Yoshiba Y; Takashina T; Hieda K; Shimizu N
    World J Microbiol Biotechnol; 2017 Mar; 33(3):47. PubMed ID: 28176202
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Tang T; Wang F; Huang H; Guo J; Guo X; Duan Y; Wang X; Wang Q; You J
    Front Microbiol; 2024; 15():1337655. PubMed ID: 38500587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].
    Xu L; Shen Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease.
    Cai XC; Liu CH; Wang BT; Xue YR
    Microbiol Res; 2017 Mar; 196():89-94. PubMed ID: 28164794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-Genome Analysis of Termite-Derived
    Zhang X; He X; Chen J; Li J; Wu Y; Chen Y; Yang Y
    Microorganisms; 2023 Nov; 11(11):. PubMed ID: 38004709
    [No Abstract]   [Full Text] [Related]  

  • 18. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata.
    Mäkinen MA; Risulainen N; Mattila H; Lundell TK
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5657-5672. PubMed ID: 29728725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor.
    Xue D; Yao D; Sukumaran RK; You X; Wei Z; Gong C
    Bioresour Technol; 2020 Apr; 302():122902. PubMed ID: 32019709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant.
    Zhao M; Shi D; Lu X; Zong H; Zhuge B; Ji H
    Bioresour Technol; 2019 Feb; 273():634-640. PubMed ID: 30502643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.