These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33792805)

  • 21. On the in vivo function of the mitral heart valve leaflet: insights into tissue-interstitial cell biomechanical coupling.
    Lee CH; Zhang W; Feaver K; Gorman RC; Gorman JH; Sacks MS
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1613-1632. PubMed ID: 28429161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vasoactive agents alter the biomechanical properties of aortic heart valve leaflets in a time-dependent manner.
    Warnock JN; Gamez CA; Metzler SA; Chen J; Elder SH; Liao J
    J Heart Valve Dis; 2010 Jan; 19(1):86-95; discussion 96. PubMed ID: 20329494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stresses of natural versus prosthetic aortic valve leaflets in vivo.
    Thubrikar M; Piepgrass WC; Deck JD; Nolan SP
    Ann Thorac Surg; 1980 Sep; 30(3):230-9. PubMed ID: 7425702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness.
    Abbasi M; Azadani AN
    J Heart Valve Dis; 2017 Jul; 26(4):386-396. PubMed ID: 29302937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitral valve finite element modeling: implications of tissues' nonlinear response and annular motion.
    Stevanella M; Votta E; Redaelli A
    J Biomech Eng; 2009 Dec; 131(12):121010. PubMed ID: 20524733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets.
    Cao K; Bukač M; Sucosky P
    Comput Methods Biomech Biomed Engin; 2016; 19(6):603-13. PubMed ID: 26155915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling leaflet correction techniques in aortic valve repair: A finite element study.
    Labrosse MR; Boodhwani M; Sohmer B; Beller CJ
    J Biomech; 2011 Aug; 44(12):2292-8. PubMed ID: 21683361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelastic properties of the aortic valve interstitial cell.
    Merryman WD; Bieniek PD; Guilak F; Sacks MS
    J Biomech Eng; 2009 Apr; 131(4):041005. PubMed ID: 19275434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries.
    Lim KH; Yeo JH; Duran CM
    J Heart Valve Dis; 2005 May; 14(3):386-92. PubMed ID: 15974534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biaxial mechanical properties of bovine jugular venous valve leaflet tissues.
    Huang HS; Lu J
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1911-1923. PubMed ID: 28631145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.
    Xuan Y; Krishnan K; Ye J; Dvir D; Guccione JM; Ge L; Tseng EE
    J Thorac Cardiovasc Surg; 2017 May; 153(5):1065-1073. PubMed ID: 28108064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded.
    Labrosse MR; Lobo K; Beller CJ
    J Biomech; 2010 Jul; 43(10):1916-22. PubMed ID: 20378117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion.
    Abbasi M; Azadani AN
    J Biomech; 2015 Oct; 48(13):3663-71. PubMed ID: 26338100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the opening mechanism of the aortic valve: some observations from simulations.
    Howard IC; Patterson EA; Yoxall A
    J Med Eng Technol; 2003; 27(6):259-66. PubMed ID: 14602517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The elastic modulus of canine aortic valve leaflets in vivo and in vitro.
    Thubrikar M; Piepgrass WC; Bosher LP; Nolan SP
    Circ Res; 1980 Nov; 47(5):792-800. PubMed ID: 7418136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.