BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33792869)

  • 1. Non-Coding RNA Silencing in Mammalian Cells by Antisense LNA GapmeRs Transfection.
    Alfeghaly C; Aigueperse C; Maenner S; Behm-Ansmant I
    Methods Mol Biol; 2021; 2300():31-37. PubMed ID: 33792869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockdown of Long Noncoding RNA Plasmacytoma Variant Translocation 1 with Antisense Locked Nucleic Acid GapmeRs Exerts Tumor-Suppressive Functions in Human Acute Erythroleukemia Cells Through Downregulation of
    Salehi M; Sharifi M; Bagheri M
    Cancer Biother Radiopharm; 2019 Aug; 34(6):371-379. PubMed ID: 30141968
    [No Abstract]   [Full Text] [Related]  

  • 3. Tips for Successful lncRNA Knockdown Using Gapmers.
    Lennox KA; Behlke MA
    Methods Mol Biol; 2020; 2176():121-140. PubMed ID: 32865787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Silencing of lncRNAs Using LNA GapmeRs.
    Taiana E; Favasuli V; Ronchetti D; Morelli E; Tassone P; Viglietto G; Munshi NC; Neri A; Amodio N
    Methods Mol Biol; 2021; 2348():157-166. PubMed ID: 34160805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers.
    Maruyama R; Yokota T
    Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs.
    Roux BT; Lindsay MA; Heward JA
    Methods Mol Biol; 2017; 1468():11-8. PubMed ID: 27662866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of Nuclear lncRNAs by Locked Nucleic Acid (LNA) Gapmers in Nephron Progenitor Cells.
    Nishikawa M; Yanagawa N
    Methods Mol Biol; 2020; 2161():29-36. PubMed ID: 32681503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.
    Lennox KA; Behlke MA
    Nucleic Acids Res; 2016 Jan; 44(2):863-77. PubMed ID: 26578588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA.
    Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J
    Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA.
    Ittig D; Liu S; Renneberg D; Schümperli D; Leumann CJ
    Nucleic Acids Res; 2004; 32(1):346-53. PubMed ID: 14726483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of GapmeRs for gene expression knockdowns in human primary resting CD4+ T cells.
    Abewe H; Deshmukh S; Mukim A; Beliakova-Bethell N
    J Immunol Methods; 2020 Jan; 476():112674. PubMed ID: 31629740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Down-modulation of cancer targets using locked nucleic acid (LNA)-based antisense oligonucleotides without transfection.
    Zhang Y; Qu Z; Kim S; Shi V; Liao B; Kraft P; Bandaru R; Wu Y; Greenberger LM; Horak ID
    Gene Ther; 2011 Apr; 18(4):326-33. PubMed ID: 21179173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and efficient elimination of specific nuclear noncoding RNAs in mammalian cells with antisense oligonucleotides.
    Hirose T; Mannen T
    Methods Mol Biol; 2015; 1206():149-56. PubMed ID: 25240894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-Mediated In Vitro Transfection Technique of Oligonucleotides with Broad Chemical Modification Compatibility.
    Wada F; Hori SI; Obika S; Yamamoto T
    Methods Mol Biol; 2020; 2176():141-154. PubMed ID: 32865788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification study of antisense gapmers.
    Stanton R; Sciabola S; Salatto C; Weng Y; Moshinsky D; Little J; Walters E; Kreeger J; DiMattia D; Chen T; Clark T; Liu M; Qian J; Roy M; Dullea R
    Nucleic Acid Ther; 2012 Oct; 22(5):344-59. PubMed ID: 22852836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity.
    Cai Y; Makarova AM; Wengel J; Howard KA
    J Gene Med; 2018 Jul; 20(7-8):e3025. PubMed ID: 29800498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells.
    Ideue T; Hino K; Kitao S; Yokoi T; Hirose T
    RNA; 2009 Aug; 15(8):1578-87. PubMed ID: 19535462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells.
    Rapozzi V; Cogoi S; Xodo LE
    Mol Cancer Ther; 2006 Jul; 5(7):1683-92. PubMed ID: 16891454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides.
    Kasuya T; Kugimiya A
    Nucleic Acid Ther; 2018 Oct; 28(5):312-317. PubMed ID: 30095329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hsa-piR-32877 Suppression with Antisense LNA GapmeRs on the Proliferation and Apoptosis of Human Acute Myeloid Leukemia Cells.
    Nasseri S; Sharifi M; Mehrzad V
    Int J Mol Cell Med; 2023; 12(1):18-29. PubMed ID: 37942262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.