These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33792873)

  • 21. Locating RNAs in situ with FISH-STIC probes.
    Sinnamon JR; Czaplinski K
    Methods Mol Biol; 2015; 1206():137-48. PubMed ID: 25240893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene oxide-quenching-based fluorescence in situ hybridization (G-FISH) to detect RNA in tissue: Simple and fast tissue RNA diagnostics.
    Hwang DW; Choi Y; Kim D; Park HY; Kim KW; Kim MY; Park CK; Lee DS
    Nanomedicine; 2019 Feb; 16():162-172. PubMed ID: 30594658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells.
    Coassin SR; Orjalo AV; Semaan SJ; Johansson HE
    Methods Mol Biol; 2014; 1211():189-99. PubMed ID: 25218386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Small RNA In Situ Hybridizations on Sections of Arabidopsis Embryos.
    Páldi K; Mosiolek M; Nodine MD
    Methods Mol Biol; 2020; 2122():87-99. PubMed ID: 31975297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides.
    Raap AK; van de Corput MP; Vervenne RA; van Gijlswijk RP; Tanke HJ; Wiegant J
    Hum Mol Genet; 1995 Apr; 4(4):529-34. PubMed ID: 7633400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization of Nuclear and Cytoplasmic Long Noncoding RNAs at Single-Cell Level by RNA-FISH.
    Santini T; Martone J; Ballarino M
    Methods Mol Biol; 2021; 2157():251-280. PubMed ID: 32820409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Coding RNA Silencing in Mammalian Cells by Antisense LNA GapmeRs Transfection.
    Alfeghaly C; Aigueperse C; Maenner S; Behm-Ansmant I
    Methods Mol Biol; 2021; 2300():31-37. PubMed ID: 33792869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA visualization in bacteria by fluorescence in situ hybridization.
    Russell JH; Keiler KC
    Methods Mol Biol; 2012; 905():87-95. PubMed ID: 22736000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification.
    Jandura A; Hu J; Wilk R; Krause HM
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence in situ hybridization of scarce leptin receptor mRNA using the enzyme-labeled fluorescent substrate method and tyramide signal amplification.
    Breininger JF; Baskin DG
    J Histochem Cytochem; 2000 Dec; 48(12):1593-99. PubMed ID: 11101627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization.
    de Haas RR; Verwoerd NP; van der Corput MP; van Gijlswijk RP; Siitari H; Tanke HJ
    J Histochem Cytochem; 1996 Oct; 44(10):1091-9. PubMed ID: 8813073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells.
    Soares RJ; Maglieri G; Gutschner T; Diederichs S; Lund AH; Nielsen BS; Holmstrøm K
    Nucleic Acids Res; 2018 Jan; 46(1):e4. PubMed ID: 29059327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA.
    Guo Q; Han JJ; Shan S; Liu DF; Wu SS; Xiong YH; Lai WH
    Biosens Bioelectron; 2016 Dec; 86():990-995. PubMed ID: 27498326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophoretic behavior of streptavidin complexed to a biotinylated probe: a functional screening assay for biotin-binding proteins.
    Humbert N; Zocchi A; Ward TR
    Electrophoresis; 2005 Jan; 26(1):47-52. PubMed ID: 15624156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Quick Immuno-FISH Protocol for Detecting RNAs, Proteins, and Chromatin Modifications.
    Ogawa A; Ogawa Y
    Methods Mol Biol; 2021; 2254():251-257. PubMed ID: 33326080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow-FISH Using Nucleic Acid Mimic Probes for the Detection of Bacteria.
    Azevedo AS; Rocha R; Dias N
    Methods Mol Biol; 2021; 2246():263-277. PubMed ID: 33576995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microarray analysis of small non-coding RNAs.
    Karbiener M; Scheideler M
    Methods Mol Biol; 2015; 1296():161-71. PubMed ID: 25791599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative and Qualitative Assessment of Small RNA Preparations.
    Marchand V; Ayadi L; Bourguignon-Igel V; Motorin Y
    Methods Mol Biol; 2021; 2300():17-29. PubMed ID: 33792868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LNA-FISH for detection of microRNAs in frozen sections.
    Silahtaroglu AN
    Methods Mol Biol; 2010; 659():165-71. PubMed ID: 20809310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualizing Long Noncoding RNAs on Chromatin.
    Hinten M; Maclary E; Gayen S; Harris C; Kalantry S
    Methods Mol Biol; 2016; 1402():147-164. PubMed ID: 26721489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.