These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

715 related articles for article (PubMed ID: 33792900)

  • 21. Elementary calcium signaling in arterial smooth muscle.
    Fan G; Cui Y; Gollasch M; Kassmann M
    Channels (Austin); 2019 Dec; 13(1):505-519. PubMed ID: 31797713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling.
    Thakore P; Earley S
    Compr Physiol; 2019 Jun; 9(3):1249-1277. PubMed ID: 31187891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Ca(2+)](i) signaling in renal arterial smooth muscle cells of pregnant rat is enhanced during inhibition of NOS.
    Murphy JG; Fleming JB; Cockrell KL; Granger JP; Khalil RA
    Am J Physiol Regul Integr Comp Physiol; 2001 Jan; 280(1):R87-99. PubMed ID: 11124138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone.
    Jackson WF
    Front Physiol; 2021; 12():770450. PubMed ID: 34819877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca(2+) sparks promote myogenic tone in retinal arterioles.
    Kur J; Bankhead P; Scholfield CN; Curtis TM; McGeown JG
    Br J Pharmacol; 2013 Apr; 168(7):1675-86. PubMed ID: 23126272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Notch signaling regulates arterial vasoreactivity through opposing functions of Jagged1 and Dll4 in the vessel wall.
    Basu S; Barbur I; Calderon A; Banerjee S; Proweller A
    Am J Physiol Heart Circ Physiol; 2018 Dec; 315(6):H1835-H1850. PubMed ID: 30168730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles.
    Westcott EB; Jackson WF
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1616-30. PubMed ID: 21357503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular signalling in arteriolar myogenic constriction: involvement of tyrosine phosphorylation pathways.
    Murphy TV; Spurrell BE; Hill MA
    Clin Exp Pharmacol Physiol; 2002 Jul; 29(7):612-9. PubMed ID: 12060106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion channels and the regulation of myogenic tone in peripheral arterioles.
    Jackson WF
    Curr Top Membr; 2020; 85():19-58. PubMed ID: 32402640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arteriolar occlusion causes independent cellular responses in endothelium and smooth muscle.
    Chen Y; Rivers RJ
    Microcirculation; 2002 Oct; 9(5):353-62. PubMed ID: 12375173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane cholesterol depletion with beta-cyclodextrin impairs pressure-induced contraction and calcium signalling in isolated skeletal muscle arterioles.
    Potocnik SJ; Jenkins N; Murphy TV; Hill MA
    J Vasc Res; 2007; 44(4):292-302. PubMed ID: 17406121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells.
    Forrest AS; Angermann JE; Raghunathan R; Lachendro C; Greenwood IA; Leblanc N
    Adv Exp Med Biol; 2010; 661():31-55. PubMed ID: 20204722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels.
    Dabertrand F; Nelson MT; Brayden JE
    Circ Res; 2012 Jan; 110(2):285-94. PubMed ID: 22095728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced capacitative calcium entry and sarcoplasmic-reticulum calcium storage capacity with advanced age in murine mesenteric arterial smooth muscle cells.
    Goyal R; Angermann JE; Ostrovskaya O; Buchholz JN; Smith GD; Wilson SM
    Exp Gerontol; 2009 Mar; 44(3):201-7. PubMed ID: 19017540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative contributions of extracellular Ca2+ and Ca2+ stores to smooth muscle contraction in arteries and arterioles of rat, guinea-pig, dog and rabbit.
    Low AM; Kotecha N; Neild TO; Kwan CY; Daniel EE
    Clin Exp Pharmacol Physiol; 1996 Apr; 23(4):310-6. PubMed ID: 8717067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles.
    Hald BO; Jacobsen JC; Braunstein TH; Inoue R; Ito Y; Sørensen PG; Holstein-Rathlou NH; Jensen LJ
    Pflugers Arch; 2012 Feb; 463(2):279-95. PubMed ID: 22052159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease.
    House SJ; Potier M; Bisaillon J; Singer HA; Trebak M
    Pflugers Arch; 2008 Aug; 456(5):769-85. PubMed ID: 18365243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of real-time confocal microscopy to intracellular calcium ion dynamics in rat arterioles.
    Saino T; Matsuura M; Satoh Y
    Histochem Cell Biol; 2002 Apr; 117(4):295-305. PubMed ID: 11976902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological evidence for capacitative Ca(2+) entry in cannulated and pressurized skeletal muscle arterioles.
    Potocnik SJ; Hill MA
    Br J Pharmacol; 2001 Sep; 134(2):247-56. PubMed ID: 11564642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.