BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33792918)

  • 1. End-to-end continuous bioprocessing: Impact on facility design, cost of goods, and cost of development for monoclonal antibodies.
    Mahal H; Branton H; Farid SS
    Biotechnol Bioeng; 2021 Sep; 118(9):3468-3485. PubMed ID: 33792918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.
    Hummel J; Pagkaliwangan M; Gjoka X; Davidovits T; Stock R; Ransohoff T; Gantier R; Schofield M
    Biotechnol J; 2019 Feb; 14(2):e1700665. PubMed ID: 29341493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture.
    Pollock J; Coffman J; Ho SV; Farid SS
    Biotechnol Prog; 2017 Jul; 33(4):854-866. PubMed ID: 28480535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of Fully Integrated Continuous Antibody Processing: Effects on Productivity and COGm.
    Arnold L; Lee K; Rucker-Pezzini J; Lee JH
    Biotechnol J; 2019 Feb; 14(2):e1800061. PubMed ID: 29729129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating end-to-end continuous antibody manufacture with column-free capture alternatives from economic, environmental, and robustness perspectives.
    Neves CPG; Coffman JL; Farid SS
    Biotechnol Prog; 2024 Jan; ():e3427. PubMed ID: 38289674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Economic assessment of continuous processing for manufacturing of biotherapeutics.
    Gupta P; Kateja N; Mishra S; Kaur H; Rathore AS
    Biotechnol Prog; 2021 Mar; 37(2):e3108. PubMed ID: 33305493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design basis for the integrated and continuous biomanufacturing framework.
    Coffman J; Bibbo K; Brower M; Forbes R; Guros N; Horowski B; Lu R; Mahajan R; Patil U; Rose S; Shultz J
    Biotechnol Bioeng; 2021 Sep; 118(9):3323-3333. PubMed ID: 33522595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.
    Pollock J; Ho SV; Farid SS
    Biotechnol Bioeng; 2013 Jan; 110(1):206-19. PubMed ID: 22806692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.
    Siganporia CC; Ghosh S; Daszkowski T; Papageorgiou LG; Farid SS
    Biotechnol Prog; 2014; 30(3):594-606. PubMed ID: 24376262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.
    Pollock J; Bolton G; Coffman J; Ho SV; Bracewell DG; Farid SS
    J Chromatogr A; 2013 Apr; 1284():17-27. PubMed ID: 23453463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated continuous production of recombinant therapeutic proteins.
    Warikoo V; Godawat R; Brower K; Jain S; Cummings D; Simons E; Johnson T; Walther J; Yu M; Wright B; McLarty J; Karey KP; Hwang C; Zhou W; Riske F; Konstantinov K
    Biotechnol Bioeng; 2012 Dec; 109(12):3018-29. PubMed ID: 22729761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies.
    Xenopoulos A
    J Biotechnol; 2015 Nov; 213():42-53. PubMed ID: 25959171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decisional tool for cost of goods analysis of bioartificial liver devices for routine clinical use.
    Mendonça da Silva J; Stamatis C; Chalmers SA; Erro E; Selden C; Farid SS
    Cytotherapy; 2021 Aug; 23(8):683-693. PubMed ID: 34116945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.
    Garcia FA; Vandiver MW
    PDA J Pharm Sci Technol; 2017; 71(3):189-205. PubMed ID: 27974629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot-scale demonstration of an end-to-end integrated and continuous biomanufacturing process.
    Coolbaugh MJ; Varner CT; Vetter TA; Davenport EK; Bouchard B; Fiadeiro M; Tugcu N; Walther J; Patil R; Brower K
    Biotechnol Bioeng; 2021 Sep; 118(9):3287-3301. PubMed ID: 33410159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economics and ecology: Modelling of continuous primary recovery and capture scenarios for recombinant antibody production.
    Cataldo AL; Burgstaller D; Hribar G; Jungbauer A; Satzer P
    J Biotechnol; 2020 Jan; 308():87-95. PubMed ID: 31809781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreactor productivity and media cost comparison for different intensified cell culture processes.
    Xu S; Gavin J; Jiang R; Chen H
    Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recommendations for Comparison of Productivity Between Fed-Batch and Perfusion Processes.
    Bausch M; Schultheiss C; Sieck JB
    Biotechnol J; 2019 Feb; 14(2):e1700721. PubMed ID: 30024096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.
    Dizon-Maspat J; Bourret J; D'Agostini A; Li F
    Biotechnol Bioeng; 2012 Apr; 109(4):962-70. PubMed ID: 22094920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online monitoring and control of upstream cell culture process using 1D and 2D-LC with SegFlow interface.
    Chemmalil L; Wasalathanthri DP; Zhang X; Kuang J; Shao C; Barbour R; Bhavsar S; Prabhakar T; Knihtila R; West J; Puri N; McHugh K; Rehmann MS; He Q; Xu J; Borys MC; Ding J; Li Z
    Biotechnol Bioeng; 2021 Sep; 118(9):3593-3603. PubMed ID: 34185315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.