These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33793005)

  • 1. Regeneration in anamniotes was replaced by regengrow and scarring in amniotes after land colonization and the evolution of terrestrial biological cycles.
    Alibardi L
    Dev Dyn; 2022 Sep; 251(9):1404-1413. PubMed ID: 33793005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ regeneration evolved in fish and amphibians in relation to metamorphosis: Speculations on a post-embryonic developmental process lost in amniotes after the water to land transition.
    Alibardi L
    Ann Anat; 2019 Mar; 222():114-119. PubMed ID: 30580055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration.
    Alibardi L
    J Morphol; 2020 Nov; 281(11):1358-1381. PubMed ID: 32865265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration among animals: An evolutionary hypothesis related to aquatic versus terrestrial environment.
    Alibardi L
    Dev Biol; 2023 Sep; 501():74-80. PubMed ID: 37353104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of regenerative blastema formation in lizards as a model to analyze limb regeneration in amniotes.
    Alibardi L
    Histol Histopathol; 2019 Oct; 34(10):1111-1120. PubMed ID: 31058307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration or Scarring Derive from Specific Evolutionary Environmental Adaptations of the Life Cycles in Different Animals.
    Alibardi L
    Biology (Basel); 2023 May; 12(5):. PubMed ID: 37237545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive modifications during evolution involving epigenetic changes have determined loss of regeneration mainly in terrestrial animals: a hypothesis.
    Alibardi L
    Dev Biol; 2024 Jul; ():. PubMed ID: 39029569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss.
    Zaraisky AG; Araslanova KR; Shitikov AD; Tereshina MB
    Biol Rev Camb Philos Soc; 2024 May; ():. PubMed ID: 38817123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspective: Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):396-405. PubMed ID: 30468307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2021 Mar; 336(2):145-164. PubMed ID: 31532061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial motor organization in postmetamorphic tiger salamanders (Ambystoma tigrinum): a segregation of epaxial and hypaxial motor pools is not necessarily associated with terrestrial locomotion.
    Fetcho JR; Reich NT
    Brain Behav Evol; 1992; 39(4):219-28. PubMed ID: 1633553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ras-dva small GTPases lost during evolution of amniotes regulate regeneration in anamniotes.
    Ivanova AS; Korotkova DD; Ermakova GV; Martynova NY; Zaraisky AG; Tereshina MB
    Sci Rep; 2018 Aug; 8(1):13035. PubMed ID: 30158598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration Abilities among Extant Animals Depend on Their Evolutionary History and Life Cycles.
    Alibardi L
    J Dev Biol; 2024 Feb; 12(1):. PubMed ID: 38390959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration.
    Abe G; Hayashi T; Yoshida K; Yoshida T; Kudoh H; Sakamoto J; Konishi A; Kamei Y; Takeuchi T; Tamura K; Yokoyama H
    Semin Cell Dev Biol; 2020 Apr; 100():109-121. PubMed ID: 31831357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny and evolutionary history of the amniote egg.
    Starck JM; Stewart JR; Blackburn DG
    J Morphol; 2021 Jul; 282(7):1080-1122. PubMed ID: 33991358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2017 Sep; 328(6):493-514. PubMed ID: 28612481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia.
    Medina L; Reiner A
    Brain Behav Evol; 1995; 46(4-5):235-58. PubMed ID: 8564466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2017 Dec; 328(8):760-771. PubMed ID: 29106045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration or scarring: an immunologic perspective.
    Harty M; Neff AW; King MW; Mescher AL
    Dev Dyn; 2003 Feb; 226(2):268-79. PubMed ID: 12557205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals?
    Galis F; Wagner GP; Jockusch EL
    Evol Dev; 2003; 5(2):208-20. PubMed ID: 12622738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.