These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33793214)
1. Green Synthesis of Iron Oxides and Phosphates via Thermal Treatment of Iron Polyphenols Synthesized by a Franco RT; Silva AL; Licea YE; Serna JDP; Alzamora M; Sánchez DR; Carvalho NMF Inorg Chem; 2021 Apr; 60(8):5734-5746. PubMed ID: 33793214 [TBL] [Abstract][Full Text] [Related]
2. Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. Carvalho SSF; Carvalho NMF J Environ Manage; 2017 Feb; 187():82-88. PubMed ID: 27883942 [TBL] [Abstract][Full Text] [Related]
3. Sequestration of Sulphide from Biogas by thermal-treated iron nanoparticles synthesized using tea polyphenols. Li X; Zhan Y; Su L; Chen Y; Chen M; Zhang L; Zhen G; Han Z; Chai X Environ Technol; 2020 Feb; 41(6):741-750. PubMed ID: 30092715 [TBL] [Abstract][Full Text] [Related]
4. Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. Xiao L; Mertens M; Wortmann L; Kremer S; Valldor M; Lammers T; Kiessling F; Mathur S ACS Appl Mater Interfaces; 2015 Apr; 7(12):6530-40. PubMed ID: 25729881 [TBL] [Abstract][Full Text] [Related]
5. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: analysis with interaction indexes and isobolograms. Enko J; Gliszczyńska-Świgło A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(8):1234-42. PubMed ID: 26035225 [TBL] [Abstract][Full Text] [Related]
6. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Ozkan ZY; Cakirgoz M; Kaymak ES; Erdim E Water Sci Technol; 2018 Jan; 77(1-2):511-517. PubMed ID: 29377835 [TBL] [Abstract][Full Text] [Related]
7. Spontaneously Assembled Nano-aggregates in Clear Green Tea Infusions from Camellia ptilophylla and Camellia sinensis. Lin X; Gao X; Chen Z; Zhang Y; Luo W; Li X; Li B J Agric Food Chem; 2017 May; 65(18):3757-3766. PubMed ID: 28412808 [TBL] [Abstract][Full Text] [Related]
8. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. Monobe M; Ema K; Kato F; Maeda-Yamamoto M J Agric Food Chem; 2008 Feb; 56(4):1423-7. PubMed ID: 18232634 [TBL] [Abstract][Full Text] [Related]
9. Functional Characterization of Epitheaflagallin 3-O-Gallate Generated in Laccase-Treated Green Tea Extracts in the Presence of Gallic Acid. Itoh N; Kurokawa J; Isogai Y; Ogasawara M; Matsunaga T; Okubo T; Katsube Y J Agric Food Chem; 2017 Dec; 65(48):10473-10481. PubMed ID: 29131612 [TBL] [Abstract][Full Text] [Related]
10. Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Zhou H; Yang M; Hou S; Deng L Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():439-445. PubMed ID: 27987729 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions. Morikawa CK; Shinohara M Water Sci Technol; 2016; 73(8):1872-81. PubMed ID: 27120642 [TBL] [Abstract][Full Text] [Related]
13. Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters. Mystrioti C; Sparis D; Papasiopi N; Xenidis A; Dermatas D; Chrysochoou M Bull Environ Contam Toxicol; 2015 Mar; 94(3):302-7. PubMed ID: 25512186 [TBL] [Abstract][Full Text] [Related]
14. Exploring the nutraceutical potential of polyphenols from black, green and white tea infusions - an overview. Tenore GC; Daglia M; Ciampaglia R; Novellino E Curr Pharm Biotechnol; 2015; 16(3):265-71. PubMed ID: 25601602 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Kamath V; Chandra P; Jeppu GP Int J Phytoremediation; 2020; 22(12):1278-1294. PubMed ID: 32515215 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. Yang X; Kong F J Sci Food Agric; 2016 Feb; 96(3):777-82. PubMed ID: 25707691 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. Lebaschi S; Hekmati M; Veisi H J Colloid Interface Sci; 2017 Jan; 485():223-231. PubMed ID: 27665075 [TBL] [Abstract][Full Text] [Related]
18. Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe Wang J; Liu C; Qi J; Li J; Sun X; Shen J; Han W; Wang L Environ Pollut; 2018 Dec; 243(Pt B):1068-1077. PubMed ID: 30253297 [TBL] [Abstract][Full Text] [Related]
19. Green Production of Zero-Valent Iron (ZVI) Using Tea-Leaf Extracts for Fenton Degradation of Mixed Rhodamine B and Methyl Orange Dyes. Eddy DR; Nursyamsiah D; Permana MD; Solihudin ; Noviyanti AR; Rahayu I Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009476 [TBL] [Abstract][Full Text] [Related]
20. Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres. Lin J; Weng X; Dharmarajan R; Chen Z Chemosphere; 2017 Feb; 169():413-417. PubMed ID: 27894052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]