These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33793270)

  • 81. Statistical estimation of structural equation models with a mixture of continuous and categorical observed variables.
    Li CH
    Behav Res Methods; 2021 Oct; 53(5):2191-2213. PubMed ID: 33791955
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A multiple imputation score test for model modification in structural equation models.
    Mansolf M; Jorgensen TD; Enders CK
    Psychol Methods; 2020 Aug; 25(4):393-411. PubMed ID: 31621350
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cross-lagged panel modeling with binary and ordinal outcomes.
    Muthén B; Asparouhov T; Witkiewitz K
    Psychol Methods; 2024 Sep; ():. PubMed ID: 39298187
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Estimation of ordinal population with multi-observer ranked set samples using ties information.
    Alvandi A; Hatefi A
    Stat Methods Med Res; 2021 Aug; 30(8):1960-1975. PubMed ID: 34218747
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Testing and modelling non-normality within the one-factor model.
    Molenaar D; Dolan CV; Verhelst ND
    Br J Math Stat Psychol; 2010 May; 63(Pt 2):293-317. PubMed ID: 19796474
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A new look at Horn's parallel analysis with ordinal variables.
    Garrido LE; Abad FJ; Ponsoda V
    Psychol Methods; 2013 Dec; 18(4):454-74. PubMed ID: 23046000
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Graphical Models for Ordinal Data.
    Guo J; Levina E; Michailidis G; Zhu J
    J Comput Graph Stat; 2015 Mar; 24(1):183-204. PubMed ID: 26120267
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Evaluating Structural Equation Models for Categorical Outcomes: A New Test Statistic and a Practical Challenge of Interpretation.
    Monroe S; Cai L
    Multivariate Behav Res; 2015; 50(6):569-83. PubMed ID: 26717119
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A two-stage estimation of structural equation models with continuous and polytomous variables.
    Lee SY; Poon WY; Bentler PM
    Br J Math Stat Psychol; 1995 Nov; 48 ( Pt 2)():339-58. PubMed ID: 8527346
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention.
    Nguyen TQ; Webb-Vargas Y; Koning IM; Stuart EA
    Struct Equ Modeling; 2016; 23(3):368-383. PubMed ID: 27158217
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Covariance Model Simulation Using Regular Vines.
    Grønneberg S; Foldnes N
    Psychometrika; 2017 Dec; 82(4):1035-1051. PubMed ID: 28439764
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED.
    Jönsson S; Kjellsson MC; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2004 Aug; 31(4):299-320. PubMed ID: 15563005
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A Monte Carlo study comparing PIV, ULS and DWLS in the estimation of dichotomous confirmatory factor analysis.
    Nestler S
    Br J Math Stat Psychol; 2013 Feb; 66(1):127-43. PubMed ID: 22524532
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Modeling Interactions Between Latent Variables in Research on Type D Personality: A Monte Carlo Simulation and Clinical Study of Depression and Anxiety.
    Lodder P; Denollet J; Emons WHM; Nefs G; Pouwer F; Speight J; Wicherts JM
    Multivariate Behav Res; 2019; 54(5):637-665. PubMed ID: 30977400
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The performance of robust test statistics with categorical data.
    Savalei V; Rhemtulla M
    Br J Math Stat Psychol; 2013 May; 66(2):201-23. PubMed ID: 22568535
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study.
    Chou CP; Bentler PM; Satorra A
    Br J Math Stat Psychol; 1991 Nov; 44 ( Pt 2)():347-57. PubMed ID: 1772802
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data.
    Lee T; Shi D
    Psychol Methods; 2021 Aug; 26(4):466-485. PubMed ID: 33507765
    [TBL] [Abstract][Full Text] [Related]  

  • 98. On the Regression Model for Generalized Normal Distributions.
    Alzaatreh A; Aljarrah M; Almagambetova A; Zakiyeva N
    Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33573179
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Omnibus hypothesis testing in dominance-based ordinal multiple regression.
    Long JD
    Psychol Methods; 2005 Sep; 10(3):329-51. PubMed ID: 16221032
    [TBL] [Abstract][Full Text] [Related]  

  • 100. An in-depth discussion and illustration of partial least squares structural equation modeling in health care.
    Avkiran NK
    Health Care Manag Sci; 2018 Sep; 21(3):401-408. PubMed ID: 28181112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.