These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33793270)
101. GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling. Verhulst B; Maes HH; Neale MC Behav Genet; 2017 May; 47(3):345-359. PubMed ID: 28299468 [TBL] [Abstract][Full Text] [Related]
102. An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation. Culpepper SA Psychometrika; 2019 Dec; 84(4):921-940. PubMed ID: 31432312 [TBL] [Abstract][Full Text] [Related]
103. Model Fit after Pairwise Maximum Likelihood. Barendse MT; Ligtvoet R; Timmerman ME; Oort FJ Front Psychol; 2016; 7():528. PubMed ID: 27148136 [TBL] [Abstract][Full Text] [Related]
104. A closer look at the effect of preliminary goodness-of-fit testing for normality for the one-sample t-test. Rochon J; Kieser M Br J Math Stat Psychol; 2011 Nov; 64(3):410-26. PubMed ID: 21973094 [TBL] [Abstract][Full Text] [Related]
105. Model Evaluation in Generalized Structured Component Analysis Using Confirmatory Tetrad Analysis. Ryoo JH; Hwang H Front Psychol; 2017; 8():916. PubMed ID: 28611724 [TBL] [Abstract][Full Text] [Related]
106. Does every study? Implementing ordinal constraint in meta-analysis. Haaf JM; Rouder JN Psychol Methods; 2023 Apr; 28(2):472-487. PubMed ID: 34807670 [TBL] [Abstract][Full Text] [Related]
107. tetrad: A Set of Stata Commands for Confirmatory Tetrad Analysis. Bauldry S; Bollen KA Struct Equ Modeling; 2016; 23(6):921-930. PubMed ID: 31360055 [TBL] [Abstract][Full Text] [Related]
108. Inference for the Analysis of Ordinal Data with Spatio-Temporal Models. Peraza-Garay F; Márquez-Urbina JU; González-Farías G Int J Biostat; 2020 Apr; ():. PubMed ID: 32246754 [TBL] [Abstract][Full Text] [Related]
109. Linear equality constraints: Reformulations of criterion related profile analysis with extensions to moderated regression for multiple groups. Davison ML; Davenport EC; Jia H Psychol Methods; 2023 Jun; 28(3):600-612. PubMed ID: 34990186 [TBL] [Abstract][Full Text] [Related]
110. Quantitative Patient-Reported Experience Measures Derived From Natural Language Processing Have a Normal Distribution and No Ceiling Effect. Rajagopalan D; Thomas J; Ring D; Fatehi A Qual Manag Health Care; 2022 Oct-Dec 01; 31(4):210-218. PubMed ID: 35383720 [TBL] [Abstract][Full Text] [Related]
112. On Misconceptions and the Limited Usefulness of Ordinal Alpha. Chalmers RP Educ Psychol Meas; 2018 Dec; 78(6):1056-1071. PubMed ID: 30559513 [TBL] [Abstract][Full Text] [Related]
114. SUFFICIENT CAUSE INTERACTIONS FOR CATEGORICAL AND ORDINAL OUTCOMES. Zaidi JM; VanderWeele TJ Stat Sin; 2021 Oct; 31(4):2195-2212. PubMed ID: 39100624 [TBL] [Abstract][Full Text] [Related]
115. spsurvey: Spatial Sampling Design and Analysis in R. Dumelle M; Kincaid T; Olsen AR; Weber M J Stat Softw; 2023 Jan; 105(3):1-29. PubMed ID: 36798141 [No Abstract] [Full Text] [Related]
116. Erratum to: A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data. Kang I; Molenaar D; Ratcliff R Psychometrika; 2023 Dec; 88(4):1592. PubMed ID: 37338801 [No Abstract] [Full Text] [Related]
118. Estimation of missing ordinal data: A comment on Wissler et al. (2022). Santos F; Villotte S Am J Biol Anthropol; 2024 Jun; 184(2):e24860. PubMed ID: 37876366 [No Abstract] [Full Text] [Related]
119. Psychosis as a continuous phenotype in the general population: the thin line between normality and pathology. David AS; Ajnakina O World Psychiatry; 2016 Jun; 15(2):129-30. PubMed ID: 27265700 [No Abstract] [Full Text] [Related]
120. Verifying model assumptions and testing normality. Evans R Vet Surg; 2024 Jan; 53(1):17. PubMed ID: 38158769 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]