BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33793421)

  • 1. Applications of marine collagens in bone tissue engineering.
    Lin Z; Tao Y; Huang Y; Xu T; Niu W
    Biomed Mater; 2021 Apr; 16(4):042007. PubMed ID: 33793421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine Collagen as A Promising Biomaterial for Biomedical Applications.
    Lim YS; Ok YJ; Hwang SY; Kwak JY; Yoon S
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31405173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Its Nature to Its Function: Marine-Collagen-Based-Biomaterials for Hard Tissue Applications.
    Diogo GS; Pirraco RP; Reis RL; Silva TH
    Tissue Eng Part B Rev; 2024 Jun; 30(3):299-314. PubMed ID: 37776181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutting Edge Aquatic-Based Collagens in Tissue Engineering.
    Panggabean JA; Adiguna SP; Hardhiyuna M; Rahmawati SI; Sadi NH; Yoga GP; Nafisyah E; Bayu A; Putra MY
    Mar Drugs; 2023 Jan; 21(2):. PubMed ID: 36827128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.
    Pallela R; Venkatesan J; Janapala VR; Kim SK
    J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of Marine Biomaterials and Their Applications in Biomedicine.
    Zhang H; Wu X; Quan L; Ao Q
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine collagen scaffolds in tissue engineering.
    Liu S; Lau CS; Liang K; Wen F; Teoh SH
    Curr Opin Biotechnol; 2022 Apr; 74():92-103. PubMed ID: 34920212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications.
    Kikionis S; Ioannou E; Aggelidou E; Tziveleka LA; Demiri E; Bakopoulou A; Zinelis S; Kritis A; Roussis V
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation.
    Parisi JR; Fernandes KR; Avanzi IR; Dorileo BP; Santana AF; Andrade AL; Gabbai-Armelin PR; Fortulan CA; Trichês ES; Granito RN; Renno ACM
    Mar Biotechnol (NY); 2019 Feb; 21(1):30-37. PubMed ID: 30218326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.
    Kuttappan S; Mathew D; Nair MB
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models.
    Zhao H; Zhang X; Zhou D; Weng Y; Qin W; Pan F; Lv S; Zhao X
    Biomed Mater; 2020 Jul; 15(4):045022. PubMed ID: 32224507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications.
    Tamburaci S; Tihminlioglu F
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():274-291. PubMed ID: 30033256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.
    Elango J; Zhang J; Bao B; Palaniyandi K; Wang S; Wenhui W; Robinson JS
    Int J Biol Macromol; 2016 Oct; 91():51-9. PubMed ID: 27211297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designs from the deep: marine organisms for bone tissue engineering.
    Clarke SA; Walsh P; Maggs CA; Buchanan F
    Biotechnol Adv; 2011; 29(6):610-7. PubMed ID: 21527337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.
    Sheehy EJ; Lemoine M; Clarke D; Gonzalez Vazquez A; O'Brien FJ
    Mar Drugs; 2020 Jan; 18(2):. PubMed ID: 31979233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural marine sponges for bone tissue engineering: The state of art and future perspectives.
    Granito RN; Custódio MR; Rennó ACM
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1717-1727. PubMed ID: 27163295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.