These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33793470)

  • 1. Optical conveyor belt based on a plasmonic metasurface with polarization dependent hot spot arrays.
    Zhang C; Jiang M; Chang Y; Liu Y; Wang G; Xu F; Lu Y
    Opt Lett; 2021 Apr; 46(7):1522-1525. PubMed ID: 33793470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically levitated conveyor belt based on polarization-dependent metasurface lens arrays.
    Xu F; Liu Y; Zhang C; Jiang M; Zhang J; Wang G; Xu F; Lu Y
    Opt Lett; 2022 May; 47(9):2194-2197. PubMed ID: 35486758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation.
    Jiang M; Wang G; Jiao W; Ying Z; Zou N; Ho HP; Sun T; Zhang X
    Opt Lett; 2017 Jan; 42(2):259-262. PubMed ID: 28081087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional arbitrary nano-manipulation on a plasmonic metasurface.
    Jiang M; Wang G; Xu W; Ji W; Zou N; Ho HP; Zhang X
    Opt Lett; 2018 Apr; 43(7):1602-1605. PubMed ID: 29601040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic graded nano-disks as nano-optical conveyor belt.
    Kang Z; Lu H; Chen J; Chen K; Xu F; Ho HP
    Opt Express; 2014 Aug; 22(16):19567-72. PubMed ID: 25321039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Operation of a Nano-Optical Conveyor Belt.
    Ryan J; Zheng Y; Hansen P; Hesselink L
    J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-optical conveyor belt with waveguide-coupled excitation.
    Wang G; Ying Z; Ho HP; Huang Y; Zou N; Zhang X
    Opt Lett; 2016 Feb; 41(3):528-31. PubMed ID: 26907415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.
    Zheng Y; Ryan J; Hansen P; Cheng YT; Lu TJ; Hesselink L
    Nano Lett; 2014 Jun; 14(6):2971-6. PubMed ID: 24807058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection.
    Zhan W; Wu R; Gao K; Zheng J; Song W
    Lab Chip; 2020 Oct; 20(21):4063-4070. PubMed ID: 33021302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic metasurface for simultaneous detection of polarization and spectrum.
    Pelzman C; Cho SY
    Opt Lett; 2016 Mar; 41(6):1213-6. PubMed ID: 26977672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-selective optical transmission through a plasmonic metasurface.
    Pelzman C; Cho SY
    Appl Phys Lett; 2015 Jun; 106(25):251101. PubMed ID: 26180264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-particle transport and the prediction of a valid area to be trapped based on a plasmonic antenna array.
    Lu CG; Hu XF; Yuan ZR; Cui YP
    RSC Adv; 2021 Mar; 11(20):12102-12106. PubMed ID: 35423734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens.
    Markovich H; Shishkin II; Hendler N; Ginzburg P
    Nano Lett; 2018 Aug; 18(8):5024-5029. PubMed ID: 29949377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
    Roxworthy BJ; Ko KD; Kumar A; Fung KH; Chow EK; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2012 Feb; 12(2):796-801. PubMed ID: 22208881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface.
    Ndukaife JC; Xuan Y; Nnanna AGA; Kildishev AV; Shalaev VM; Wereley ST; Boltasseva A
    ACS Nano; 2018 Jun; 12(6):5376-5384. PubMed ID: 29847087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable optofluidic sorting and manipulation on micro-ring resonators from a statistics perspective.
    Xu W; Wang Y; Jiao W; Wang F; Xu X; Jiang M; Ho HP; Wang G
    Opt Lett; 2019 Jul; 44(13):3226-3229. PubMed ID: 31259927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guided transport of nanoparticles by plasmonic nanowires.
    Yang C; Pan D; Tong L; Xu H
    Nanoscale; 2016 Nov; 8(46):19195-19199. PubMed ID: 27830859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic vortices for tunable manipulation of target particles, using arrays of elliptical holes in a gold layer.
    Ghanei AM; Aghili A; Darbari S; Talebi N
    Sci Rep; 2023 Jan; 13(1):54. PubMed ID: 36593270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.