These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33793561)

  • 1. Emergence of co-expression in gene regulatory networks.
    Yin W; Mendoza L; Monzon-Sandoval J; Urrutia AO; Gutierrez H
    PLoS One; 2021; 16(4):e0247671. PubMed ID: 33793561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational identification of transcriptional regulators in human endotoxemia.
    Nguyen TT; Foteinou PT; Calvano SE; Lowry SF; Androulakis IP
    PLoS One; 2011; 6(5):e18889. PubMed ID: 21637747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MyoMiner: explore gene co-expression in normal and pathological muscle.
    Malatras A; Michalopoulos I; Duguez S; Butler-Browne G; Spuler S; Duddy WJ
    BMC Med Genomics; 2020 May; 13(1):67. PubMed ID: 32393257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of gene co-expression network from microarray data using local expression patterns.
    Roy S; Bhattacharyya DK; Kalita JK
    BMC Bioinformatics; 2014; 15 Suppl 7(Suppl 7):S10. PubMed ID: 25079873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-expression Networks in Predicting Transcriptional Gene Regulation.
    AbuQamar SF; El-Tarabily KA; Sham A
    Methods Mol Biol; 2021; 2328():1-11. PubMed ID: 34251616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of regulatory networks that are altered in disease via differential co-expression.
    Amar D; Safer H; Shamir R
    PLoS Comput Biol; 2013; 9(3):e1002955. PubMed ID: 23505361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.
    Jambusaria A; Klomp J; Hong Z; Rafii S; Dai Y; Malik AB; Rehman J
    BMC Bioinformatics; 2018 Jun; 19(1):217. PubMed ID: 29940845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Expression Network Analysis Identifies miRNA⁻mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites.
    Ammah AA; Do DN; Bissonnette N; Gévry N; Ibeagha-Awemu EM
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cis-Regulatory Elements in Gene Co-expression Networks in Cancer.
    Triska M; Ivliev A; Nikolsky Y; Tatarinova TV
    Methods Mol Biol; 2017; 1613():291-310. PubMed ID: 28849565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive screening for regulators of conserved functional gene modules (gene batteries) in mammals.
    Nelander S; Larsson E; Kristiansson E; Månsson R; Nerman O; Sigvardsson M; Mostad P; Lindahl P
    BMC Genomics; 2005 May; 6():68. PubMed ID: 15882449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation.
    Yu H; Mitra R; Yang J; Li Y; Zhao Z
    Sci China Life Sci; 2014 Nov; 57(11):1090-102. PubMed ID: 25326829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Functional Modules in Co-Regulatory Networks Through Overlapping Spectral Clustering.
    Luo J; Yin Y; Pan C; Xiang G; Tu NH; Jiawei Luo ; Ying Yin ; Chu Pan ; Gen Xiang ; Nguyen Hoang Tu ; Pan C; Xiang G; Yin Y; Luo J; Tu NH
    IEEE Trans Nanobioscience; 2018 Apr; 17(2):134-144. PubMed ID: 29870337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized gene co-expression analysis via subspace clustering using low-rank representation.
    Wang T; Zhang J; Huang K
    BMC Bioinformatics; 2019 May; 20(Suppl 7):196. PubMed ID: 31074376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.