BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33793680)

  • 1. The influence of beam delivery uncertainty on dose uniformity and penumbra for pencil beam scanning in carbon-ion radiotherapy.
    Li Y; Gao Y; Liu X; Shi J; Xia J; Yang J; Mao L
    PLoS One; 2021; 16(4):e0249452. PubMed ID: 33793680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel pencil beam model for carbon-ion dose calculation derived from Monte Carlo simulations.
    Zhang H; Dai Z; Liu X; Chen W; Ma Y; He P; Dai T; Shen G; Yuan P; Li Q
    Phys Med; 2018 Nov; 55():15-24. PubMed ID: 30471815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy.
    Mirandola A; Molinelli S; Vilches Freixas G; Mairani A; Gallio E; Panizza D; Russo S; Ciocca M; Donetti M; Magro G; Giordanengo S; Orecchia R
    Med Phys; 2015 Sep; 42(9):5287-300. PubMed ID: 26328978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams.
    Parodi K; Mairani A; Sommerer F
    J Radiat Res; 2013 Jul; 54 Suppl 1(Suppl 1):i91-6. PubMed ID: 23824133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon-ion radiotherapy using tracking of secondary ions.
    Félix-Bautista R; Ghesquière-Diérickx L; Marek L; Granja C; Soukup P; Turecek D; Kelleter L; Brons S; Ellerbrock M; Jäkel O; Gehrke T; Martišíková M
    Med Phys; 2021 Aug; 48(8):4411-4424. PubMed ID: 34061994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GEMPix-based integrated system for measurements of 3D dose distributions in water for carbon ion scanning beam radiotherapy.
    Leidner J; Ciocca M; Mairani A; Murtas F; Silari M
    Med Phys; 2020 Jun; 47(6):2516-2525. PubMed ID: 32135033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.
    Hirayama S; Takayanagi T; Fujii Y; Fujimoto R; Fujitaka S; Umezawa M; Nagamine Y; Hosaka M; Yasui K; Omachi C; Toshito T
    Med Phys; 2016 Mar; 43(3):1437-50. PubMed ID: 26936728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of beam optics asymmetric distribution on dose in scanning carbon-ion radiotherapy.
    Dong S; Zhang F; Schlegel N; Wang W; Sun J; Sheng Y; Xia X
    J Appl Clin Med Phys; 2022 Sep; 23(9):e13656. PubMed ID: 35635548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy.
    Inaniwa T; Kanematsu N; Hara Y; Furukawa T; Fukahori M; Nakao M; Shirai T
    Phys Med Biol; 2014 Sep; 59(18):5361-86. PubMed ID: 25157579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and commissioning of the non-dedicated scanning proton beamline for ocular treatment at the synchrotron-based CNAO facility.
    Ciocca M; Magro G; Mastella E; Mairani A; Mirandola A; Molinelli S; Russo S; Vai A; Fiore MR; Mosci C; Valvo F; Via R; Baroni G; Orecchia R
    Med Phys; 2019 Apr; 46(4):1852-1862. PubMed ID: 30659616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneity study of proton and carbon ion scanning beams using combinations of different spot sizes and grid sizes.
    Xing Y; Wu X; Li Y; Zhao J
    Med Phys; 2017 Nov; 44(11):6047-6052. PubMed ID: 28886211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric effect of the low dose envelope associated with different beam models for carbon-ion spot scanning beam delivery.
    Zhang H; Dai T; Liu X; Chen W; Ma Y; He P; Shen G; Yuan P; Dai Z; Li Q
    Acta Oncol; 2019 Dec; 58(12):1790-1793. PubMed ID: 31368396
    [No Abstract]   [Full Text] [Related]  

  • 13. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans.
    Bazalova-Carter M; Qu B; Palma B; Hårdemark B; Hynning E; Jensen C; Maxim PG; Loo BW
    Med Phys; 2015 May; 42(5):2615-25. PubMed ID: 25979053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements.
    Tessonnier T; Mairani A; Brons S; Sala P; Cerutti F; Ferrari A; Haberer T; Debus J; Parodi K
    Phys Med Biol; 2017 Aug; 62(16):6784-6803. PubMed ID: 28762335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of porous structure for broadening Bragg-peak in scanning carbon-ion radiotherapy: Monte Carlo simulation and experimental validation.
    Dong S; Sun J; Ming X; Weber U; Schuy C; Hu W; Sheng Y
    Phys Med; 2024 Apr; 120():103325. PubMed ID: 38493583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line.
    Romano F; Cirrone GA; Cuttone G; Rosa FD; Mazzaglia SE; Petrovic I; Fira AR; Varisano A
    Phys Med Biol; 2014 Jun; 59(12):2863-82. PubMed ID: 24828462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo assessment of beam deflection and depth dose equivalent variation of a carbon-ion beam in a perpendicular magnetic field.
    Akbari M; Karimian A
    Phys Med; 2019 May; 61():33-43. PubMed ID: 31151577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.
    Shirey RJ; Wu HT
    J Appl Clin Med Phys; 2018 Jan; 19(1):164-173. PubMed ID: 29239528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical dose-averaged LET calculation algorithm considering the off-axis LET enhancement by secondary protons for spot-scanning proton therapy.
    Hirayama S; Matsuura T; Ueda H; Fujii Y; Fujii T; Takao S; Miyamoto N; Shimizu S; Fujimoto R; Umegaki K; Shirato H
    Med Phys; 2018 Jul; 45(7):3404-3416. PubMed ID: 29788552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes.
    Robert C; Dedes G; Battistoni G; Böhlen TT; Buvat I; Cerutti F; Chin MP; Ferrari A; Gueth P; Kurz C; Lestand L; Mairani A; Montarou G; Nicolini R; Ortega PG; Parodi K; Prezado Y; Sala PR; Sarrut D; Testa E
    Phys Med Biol; 2013 May; 58(9):2879-99. PubMed ID: 23571094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.