These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33793685)

  • 1. Flow Features of the Near Wake of the Australian Boobook Owl (
    Lawley J; Ben-Gida H; Krishnamoorthy K; Hackett EE; Kopp GA; Morgan G; Guglielmo CG; Gurka R
    Integr Org Biol; 2019; 1(1):obz001. PubMed ID: 33793685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent Wake-Flow Characteristics in the Near Wake of Freely Flying Raptors: A Comparative Analysis Between an Owl and a Hawk.
    Krishnan K; Ben-Gida H; Morgan G; Kopp GA; Guglielmo CG; Gurka R
    Integr Comp Biol; 2020 Nov; 60(5):1109-1122. PubMed ID: 32697833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.
    Stalnov O; Ben-Gida H; Kirchhefer AJ; Guglielmo CG; Kopp GA; Liberzon A; Gurka R
    PLoS One; 2015; 10(9):e0134582. PubMed ID: 26394213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.
    Rao C; Ikeda T; Nakata T; Liu H
    Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model.
    Rong J; Jiang Y; Murayama Y; Ishibashi R; Murakami M; Liu H
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of leading-edge serrations in controlling the flow over owls' wing.
    Saussaman T; Nafi A; Charland D; Ben-Gida H; Gurka R
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37650253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).
    Ben-Gida H; Kirchhefer A; Taylor ZJ; Bezner-Kerr W; Guglielmo CG; Kopp GA; Gurka R
    PLoS One; 2013; 8(11):e80086. PubMed ID: 24278243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Numerical Simulations of a Great Horn Owl in Flapping Flight.
    Beratlis N; Capuano F; Krishnan K; Gurka R; Squires K; Balaras E
    Integr Comp Biol; 2020 Nov; 60(5):1091-1108. PubMed ID: 32926106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and Ecology of Silent Flight in Owls and Other Flying Vertebrates.
    Clark CJ; LePiane K; Liu L
    Integr Org Biol; 2020; 2(1):obaa001. PubMed ID: 33791545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the Dorsal Velvet of Barn Owl Wing Feathers Decreases Rubbing Sounds during Flapping Flight.
    LePiane K; Clark CJ
    Integr Comp Biol; 2020 Nov; 60(5):1068-1079. PubMed ID: 32525524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Sequence of a Beak and Feather Disease Virus from an Unusual Novel Host, Australian Boobook Owl (Ninox boobook).
    Sarker S; Athukorala A; Phalen DN
    Microbiol Resour Announc; 2022 Apr; 11(4):e0017222. PubMed ID: 35319253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid-structure interaction simulation of an avian flight model.
    Ruck S; Oertel H
    J Exp Biol; 2010 Dec; 213(Pt 24):4180-92. PubMed ID: 21112999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of barn owl leading edge serrations with freestream turbulence.
    Midmer A; Brücker C; Weger M; Wagner H; Bleckmann H
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38569525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a Near-Complete Genome Sequence of a Chaphamaparvovirus from an Australian Boobook Owl (Ninox boobook).
    Sarker S; Athukorala A; Phalen DN
    Microbiol Resour Announc; 2022 May; 11(5):e0024922. PubMed ID: 35438543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight performance of western sandpipers, Calidris mauri, remains uncompromised when mounting an acute phase immune response.
    Nebel S; Buehler DM; MacMillan A; Guglielmo CG
    J Exp Biol; 2013 Jul; 216(Pt 14):2752-9. PubMed ID: 23531820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular control and kinematics of intermittent flight in the European starling (Sturnus vulgaris).
    Tobalske B
    J Exp Biol; 1995; 198(Pt 6):1259-73. PubMed ID: 9319121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.