BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33793859)

  • 1. Visualizing protein-protein interactions in plants by rapamycin-dependent delocalization.
    Winkler J; Mylle E; De Meyer A; Pavie B; Merchie J; Grones P; Van Damme DL
    Plant Cell; 2021 May; 33(4):1101-1117. PubMed ID: 33793859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-Protein Interactions Visualized by Bimolecular Fluorescence Complementation in Arabidopsis thaliana Protoplasts from Leaf.
    Jayasree A; Salava H; Nodzynski T; Thula S
    Methods Mol Biol; 2024; 2787():305-313. PubMed ID: 38656499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation.
    Offenborn JN; Waadt R; Kudla J
    New Phytol; 2015 Oct; 208(1):269-79. PubMed ID: 25919910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Tripartite Split-sfGFP for the Study of Membrane Protein-Protein Interactions.
    Liu TY
    Methods Mol Biol; 2021; 2200():323-336. PubMed ID: 33175385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of dynamic protein-protein interactions in planta by a floated-leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors.
    Gehl C; Kaufholdt D; Hamisch D; Bikker R; Kudla J; Mendel RR; Hänsch R
    Plant J; 2011 Aug; 67(3):542-53. PubMed ID: 21481030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association.
    Liu TY; Chou WC; Chen WY; Chu CY; Dai CY; Wu PY
    Plant J; 2018 May; 94(3):426-438. PubMed ID: 29451720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy.
    Parada CA; de Oliveira IP; Gewehr MCF; Machado-Neto JA; Lima K; Eichler RAS; Lopes LR; Bechara LRG; Ferreira JCB; Festuccia WT; Censoni L; Tersariol ILS; Ferro ES
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimolecular Fluorescence Complementation with Improved Gateway-Compatible Vectors to Visualize Protein-Protein Interactions in Plant Cells.
    Goto-Yamada S; Hikino K; Nishimura M; Nakagawa T; Mano S
    Methods Mol Biol; 2018; 1794():245-258. PubMed ID: 29855962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions.
    To TL; Zhang Q; Shu X
    Protein Sci; 2016 Mar; 25(3):748-53. PubMed ID: 26690964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro Determination of Rapamycin-triggered FKBP-FRB Interactions Using a Molecular Tension Probe.
    Kim SB; Nishihara R; Fujii R; Paulmurugan R; Citterio D; Suzuki K
    Anal Sci; 2019 Jan; 35(1):71-78. PubMed ID: 30504653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gateway Vectors for Simultaneous Detection of Multiple Protein-Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation.
    Kamigaki A; Nito K; Hikino K; Goto-Yamada S; Nishimura M; Nakagawa T; Mano S
    PLoS One; 2016; 11(8):e0160717. PubMed ID: 27490375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of protein interactions in plant using a gateway compatible bimolecular fluorescence complementation (BiFC) system.
    Tian G; Lu Q; Zhang L; Kohalmi SE; Cui Y
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21947026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus.
    Lund CH; Bromley JR; Stenbæk A; Rasmussen RE; Scheller HV; Sakuragi Y
    J Exp Bot; 2015 Jan; 66(1):85-97. PubMed ID: 25326916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimolecular Fluorescence Complementation (TriFC) Assay for Visualization of RNA-Protein Interaction in Plants.
    Seo JS; Chua NH
    Methods Mol Biol; 2019; 1933():297-303. PubMed ID: 30945194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tobacco System for Studying Protein Colocalization and Interactions.
    Zhang J; He S
    Methods Mol Biol; 2021; 2297():167-174. PubMed ID: 33656681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association.
    Robida AM; Kerppola TK
    J Mol Biol; 2009 Dec; 394(3):391-409. PubMed ID: 19733184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases.
    Weidtkamp-Peters S; Stahl Y
    Methods Mol Biol; 2017; 1621():163-175. PubMed ID: 28567653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement.
    Bhat S; Folimonova SY; Cole AB; Ballard KD; Lei Z; Watson BS; Sumner LW; Nelson RS
    Plant Physiol; 2013 Jan; 161(1):134-47. PubMed ID: 23096159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
    Inobe T; Nukina N
    J Biosci Bioeng; 2016 Jul; 122(1):40-6. PubMed ID: 26777239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.