These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 33793929)
1. Gibberellin and auxin signaling genes RGA1 and ARF8 repress accessory fruit initiation in diploid strawberry. Zhou J; Sittmann J; Guo L; Xiao Y; Huang X; Pulapaka A; Liu Z Plant Physiol; 2021 Apr; 185(3):1059-1075. PubMed ID: 33793929 [TBL] [Abstract][Full Text] [Related]
2. Gibberellin biosynthesis and signalling during development of the strawberry receptacle. Csukasi F; Osorio S; Gutierrez JR; Kitamura J; Giavalisco P; Nakajima M; Fernie AR; Rathjen JP; Botella MA; Valpuesta V; Medina-Escobar N New Phytol; 2011 Jul; 191(2):376-390. PubMed ID: 21443649 [TBL] [Abstract][Full Text] [Related]
3. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Liao X; Li M; Liu B; Yan M; Yu X; Zi H; Liu R; Yamamuro C Proc Natl Acad Sci U S A; 2018 Dec; 115(49):E11542-E11550. PubMed ID: 30455308 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa). Jang YJ; Kim T; Lin M; Kim J; Begcy K; Liu Z; Lee S BMC Plant Biol; 2024 Sep; 24(1):876. PubMed ID: 39304822 [TBL] [Abstract][Full Text] [Related]
5. The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato. Hu J; Israeli A; Ori N; Sun TP Plant Cell; 2018 Aug; 30(8):1710-1728. PubMed ID: 30008445 [TBL] [Abstract][Full Text] [Related]
6. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Kang C; Darwish O; Geretz A; Shahan R; Alkharouf N; Liu Z Plant Cell; 2013 Jun; 25(6):1960-78. PubMed ID: 23898027 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the effect of each plant hormone on the maturation of woodland strawberry fruit in auxin-induced parthenocarpic fruit. Umemura H; Nakajima M; Ishii H; Kurokura T; Asami T; Shimada Y; Nakamura A Biosci Biotechnol Biochem; 2023 May; 87(6):592-604. PubMed ID: 36914217 [TBL] [Abstract][Full Text] [Related]
8. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca. Li W; Zhang J; Sun H; Wang S; Chen K; Liu Y; Li H; Ma Y; Zhang Z Planta; 2018 Apr; 247(4):941-951. PubMed ID: 29288326 [TBL] [Abstract][Full Text] [Related]
9. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. Jung CJ; Hur YY; Yu HJ; Noh JH; Park KS; Lee HJ PLoS One; 2014; 9(4):e95634. PubMed ID: 24743886 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Gu T; Jia S; Huang X; Wang L; Fu W; Huo G; Gan L; Ding J; Li Y Planta; 2019 Jul; 250(1):145-162. PubMed ID: 30949762 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. Tang N; Deng W; Hu G; Hu N; Li Z PLoS One; 2015; 10(4):e0125355. PubMed ID: 25909657 [TBL] [Abstract][Full Text] [Related]
12. Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. Csukasi F; Donaire L; Casañal A; Martínez-Priego L; Botella MA; Medina-Escobar N; Llave C; Valpuesta V New Phytol; 2012 Jul; 195(1):47-57. PubMed ID: 22494113 [TBL] [Abstract][Full Text] [Related]
13. Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. Okabe Y; Yamaoka T; Ariizumi T; Ushijima K; Kojima M; Takebayashi Y; Sakakibara H; Kusano M; Shinozaki Y; Pulungan SI; Kubo Y; Nakano R; Ezura H Plant Cell Physiol; 2019 Jan; 60(1):38-51. PubMed ID: 30192961 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Carrera E; Ruiz-Rivero O; Peres LE; Atares A; Garcia-Martinez JL Plant Physiol; 2012 Nov; 160(3):1581-96. PubMed ID: 22942390 [TBL] [Abstract][Full Text] [Related]
15. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. de Jong M; Wolters-Arts M; García-Martínez JL; Mariani C; Vriezen WH J Exp Bot; 2011 Jan; 62(2):617-26. PubMed ID: 20937732 [TBL] [Abstract][Full Text] [Related]
16. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). Wu H; Li H; Chen H; Qi Q; Ding Q; Xue J; Ding J; Jiang X; Hou X; Li Y BMC Plant Biol; 2019 Feb; 19(1):73. PubMed ID: 30764758 [TBL] [Abstract][Full Text] [Related]
17. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry. Liu H; Xie WF; Zhang L; Valpuesta V; Ye ZW; Gao QH; Duan K J Integr Plant Biol; 2014 Apr; 56(4):350-63. PubMed ID: 24373096 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.). Liu H; Ying YY; Zhang L; Gao QH; Li J; Zhang Z; Fang JG; Duan K Plant Cell Rep; 2012 Aug; 31(8):1425-35. PubMed ID: 22491872 [TBL] [Abstract][Full Text] [Related]
19. Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. Feng J; Dai C; Luo H; Han Y; Liu Z; Kang C J Exp Bot; 2019 Jan; 70(2):563-574. PubMed ID: 30371880 [TBL] [Abstract][Full Text] [Related]
20. Differential expression of flavonoid 3'-hydroxylase during fruit development establishes the different B-ring hydroxylation patterns of flavonoids in Fragaria × ananassa and Fragaria vesca. Thill J; Miosic S; Gotame TP; Mikulic-Petkovsek M; Gosch C; Veberic R; Preuss A; Schwab W; Stampar F; Stich K; Halbwirth H Plant Physiol Biochem; 2013 Nov; 72():72-8. PubMed ID: 23623754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]