These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 33794903)
1. Nanotechnology: new opportunities for the development of patch-clamps. Gao J; Liao C; Liu S; Xia T; Jiang G J Nanobiotechnology; 2021 Apr; 19(1):97. PubMed ID: 33794903 [TBL] [Abstract][Full Text] [Related]
2. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Abbott J; Ye T; Ham D; Park H Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381 [TBL] [Abstract][Full Text] [Related]
3. Beyond the patch clamp: nanotechnologies for intracellular recording. Kruskal PB; Jiang Z; Gao T; Lieber CM Neuron; 2015 Apr; 86(1):21-4. PubMed ID: 25856481 [TBL] [Abstract][Full Text] [Related]
5. Nanotechnology and neurophysiology. Angle MR; Cui B; Melosh NA Curr Opin Neurobiol; 2015 Jun; 32():132-40. PubMed ID: 25889532 [TBL] [Abstract][Full Text] [Related]
6. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Abbott J; Ye T; Krenek K; Gertner RS; Ban S; Kim Y; Qin L; Wu W; Park H; Ham D Nat Biomed Eng; 2020 Feb; 4(2):232-241. PubMed ID: 31548592 [TBL] [Abstract][Full Text] [Related]
7. Membrane-coated glass electrodes for stable, low-noise electrophysiology recordings in Drosophila central neurons. Jameson AT; Spera LK; Nguyen DL; Paul EM; Tabuchi M J Neurosci Methods; 2024 Apr; 404():110079. PubMed ID: 38340901 [TBL] [Abstract][Full Text] [Related]
8. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Qing Q; Jiang Z; Xu L; Gao R; Mai L; Lieber CM Nat Nanotechnol; 2014 Feb; 9(2):142-7. PubMed ID: 24336402 [TBL] [Abstract][Full Text] [Related]
9. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Duan X; Fu TM; Liu J; Lieber CM Nano Today; 2013 Aug; 8(4):351-373. PubMed ID: 24073014 [TBL] [Abstract][Full Text] [Related]
10. Nanowires precisely grown on the ends of microwire electrodes permit the recording of intracellular action potentials within deeper neural structures. Ferguson JE; Boldt C; Puhl JG; Stigen TW; Jackson JC; Crisp KM; Mesce KA; Netoff TI; Redish AD Nanomedicine (Lond); 2012 Jun; 7(6):847-53. PubMed ID: 22475650 [TBL] [Abstract][Full Text] [Related]
11. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues. Duan X; Lieber CM Chem Asian J; 2013 Oct; 8(10):2304-14. PubMed ID: 23946279 [TBL] [Abstract][Full Text] [Related]
12. Opportunities and dilemmas of Wu Y; Chen H; Guo L RSC Adv; 2019 Dec; 10(1):187-200. PubMed ID: 35492533 [TBL] [Abstract][Full Text] [Related]
16. The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons. Abbott J; Ye T; Krenek K; Qin L; Kim Y; Wu W; Gertner RS; Park H; Ham D IEEE J Solid-State Circuits; 2020 Sep; 55(9):2567-2582. PubMed ID: 33762776 [TBL] [Abstract][Full Text] [Related]
17. Nanodevices for cellular interfaces and electrophysiological recording. Yang L; Li Y; Fang Y Adv Mater; 2013 Jul; 25(28):3881-7. PubMed ID: 24048974 [TBL] [Abstract][Full Text] [Related]
18. Automated characterization and assembly of individual nanowires for device fabrication. Yu K; Yi J; Shan JW Lab Chip; 2018 May; 18(10):1494-1503. PubMed ID: 29707725 [TBL] [Abstract][Full Text] [Related]
19. On neural recording using nanoprotrusion electrodes. Guo L J Neural Eng; 2019 Dec; 17(1):016017. PubMed ID: 31658443 [TBL] [Abstract][Full Text] [Related]
20. Electrophysiological analysis of neuronal chemokine receptors. Oh SB; Cho C; Miller RJ Methods; 2003 Apr; 29(4):335-44. PubMed ID: 12725800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]