These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33795757)
1. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Huang H; Reddy NG; Huang X; Chen P; Wang P; Zhang Y; Huang Y; Lin P; Garg A Sci Rep; 2021 Apr; 11(1):7419. PubMed ID: 33795757 [TBL] [Abstract][Full Text] [Related]
2. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602 [TBL] [Abstract][Full Text] [Related]
3. The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures. Kameyama K; Miyamoto T; Iwata Y Materials (Basel); 2019 May; 12(11):. PubMed ID: 31141965 [TBL] [Abstract][Full Text] [Related]
4. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. Xu D; Zhao Y; Sun K; Gao B; Wang Z; Jin J; Zhang Z; Wang S; Yan Y; Liu X; Wu F Chemosphere; 2014 Sep; 111():320-6. PubMed ID: 24997935 [TBL] [Abstract][Full Text] [Related]
5. Comparison of plant Cd accumulation from a Cd-contaminated soil amended with biochar produced from various feedstocks. Kameyama K; Miyamoto T; Iwata Y Environ Sci Pollut Res Int; 2021 Mar; 28(10):12699-12706. PubMed ID: 33089459 [TBL] [Abstract][Full Text] [Related]
6. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures. Huang D; Yang L; Ko JH; Xu Q Sci Total Environ; 2019 Nov; 693():133594. PubMed ID: 31377353 [TBL] [Abstract][Full Text] [Related]
8. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Manolikaki II; Mangolis A; Diamadopoulos E J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359 [TBL] [Abstract][Full Text] [Related]
9. Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Zielińska A; Oleszczuk P Environ Sci Pollut Res Int; 2016 Nov; 23(21):21822-21832. PubMed ID: 27523043 [TBL] [Abstract][Full Text] [Related]
10. Biochar made from low density wood has greater plant available water than biochar made from high density wood. Werdin J; Fletcher TD; Rayner JP; Williams NSG; Farrell C Sci Total Environ; 2020 Feb; 705():135856. PubMed ID: 31831248 [TBL] [Abstract][Full Text] [Related]
11. Significance of pyrolytic temperature, application rate and incubation period of biochar in improving hydro-physical properties of calcareous sandy loam soil. Albalasmeh AA; Quzaih MZ; Gharaibeh MA; Rusan M; Mohawesh OE; Rababah SR; Alqudah A; Alghamdi AG; Naserin A Sci Rep; 2024 Mar; 14(1):7012. PubMed ID: 38528139 [TBL] [Abstract][Full Text] [Related]
12. Does biochar affect the availability and chemical fractionation of phosphate in soils? Hong C; Lu S Environ Sci Pollut Res Int; 2018 Mar; 25(9):8725-8734. PubMed ID: 29327187 [TBL] [Abstract][Full Text] [Related]
13. Indaziflam sorption-desorption and its three metabolites from biochars- and their raw feedstock-amended agricultural soils using radiometric technique. Mendes KF; Soares MB; Sousa RN; Mielke KC; Brochado MGDS; Tornisielo VL J Environ Sci Health B; 2021; 56(8):731-740. PubMed ID: 34190026 [TBL] [Abstract][Full Text] [Related]
14. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131 [TBL] [Abstract][Full Text] [Related]
15. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Suliman W; Harsh JB; Abu-Lail NI; Fortuna AM; Dallmeyer I; Garcia-Pérez M Sci Total Environ; 2017 Jan; 574():139-147. PubMed ID: 27627689 [TBL] [Abstract][Full Text] [Related]
16. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Song XD; Xue XY; Chen DZ; He PJ; Dai XH Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602 [TBL] [Abstract][Full Text] [Related]
17. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Mandal S; Donner E; Vasileiadis S; Skinner W; Smith E; Lombi E Sci Total Environ; 2018 Jun; 627():942-950. PubMed ID: 29426218 [TBL] [Abstract][Full Text] [Related]
18. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Meng J; Tao M; Wang L; Liu X; Xu J Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374 [TBL] [Abstract][Full Text] [Related]
19. Erodibility assessment of compacted biochar amended soil for geo-environmental applications. Kumar H; Ganesan SP; Bordoloi S; Sreedeep S; Lin P; Mei G; Garg A; Sarmah AK Sci Total Environ; 2019 Jul; 672():698-707. PubMed ID: 30974360 [TBL] [Abstract][Full Text] [Related]
20. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Nan H; Yin J; Yang F; Luo Y; Zhao L; Cao X Environ Pollut; 2021 Oct; 287():117566. PubMed ID: 34153610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]