These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33795972)

  • 1. HCl•DMPU-Assisted One-pot and Metal-free Conversion of Aldehydes to Nitriles.
    Mudshinge SR; Potnis CS; Xu B; Hammond GB
    Green Chem; 2020 Jul; 22(13):4161-4164. PubMed ID: 33795972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 5 + 1 Protic Acid Assisted Aza-Pummerer Approach for Synthesis of 4-Chloropiperidines from Homoallylic Amines.
    Ebule R; Mudshinge S; Nantz MH; Mashuta MS; Hammond GB; Xu B
    J Org Chem; 2019 Mar; 84(6):3249-3259. PubMed ID: 30758961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfuryl Fluoride Mediated Conversion of Aldehydes to Nitriles.
    Gurjar J; Bater J; Fokin VV
    Chemistry; 2019 Feb; 25(8):1906-1909. PubMed ID: 30346050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imidazole Hydrochloride Promoted Synthesis of Nitriles from Aldehydes.
    Wang Y; Wang X; Li Y; Zhang X; Li L; He T; Yuan J; Shang S
    Curr Org Synth; 2022; 19(8):923-929. PubMed ID: 35579128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Base-Free Catalytic Wittig Reaction for the Synthesis of Highly Functionalized Alkenes.
    Schirmer ML; Adomeit S; Spannenberg A; Werner T
    Chemistry; 2016 Feb; 22(7):2458-65. PubMed ID: 26762186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst-free synthesis of skipped dienes from phosphorus ylides, allylic carbonates, and aldehydes via a one-pot SN2' allylation-Wittig strategy.
    Xu S; Zhu S; Shang J; Zhang J; Tang Y; Dou J
    J Org Chem; 2014 Apr; 79(8):3696-703. PubMed ID: 24661220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent free, microwave assisted conversion of aldehydes into nitriles and oximes in the presence of NH2OH x HCl and TiO2.
    Hoelz LV; Gonçalves BT; Barros JC; da Silva JF
    Molecules; 2009 Dec; 15(1):94-9. PubMed ID: 20110874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe-based N-doped dendritic catalysts for catalytic ammoxidation of aromatic aldehydes to aromatic nitriles.
    Zhao H; Sun X; Xu D; Zhu Q; Zhu Y; Dong Z
    J Colloid Interface Sci; 2020 Apr; 565():177-185. PubMed ID: 31958657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Synthesis of Highly Functionalized Pyridines by a One-Pot, Three-Component Tandem Reaction of Aldehydes, Malononitrile and N-Alkyl-2-cyanoacetamides under Microwave Irradiation.
    Mekheimer RA; Al-Sheikh MA; Medrasi HY; Alsofyani NHH
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29522435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition-Metal-Free Cascade Approach for the Synthesis of Functionalized Biaryls by S
    Xu G; Han Z; Guo L; Lu H; Gao H
    J Org Chem; 2022 Aug; 87(15):10449-10453. PubMed ID: 35831025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-metal-free hydration of nitriles using potassium tert-butoxide under anhydrous conditions.
    Midya GC; Kapat A; Maiti S; Dash J
    J Org Chem; 2015 Apr; 80(8):4148-51. PubMed ID: 25786059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis.
    Yin W; Wang C; Huang Y
    Org Lett; 2013 Apr; 15(8):1850-3. PubMed ID: 23560642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Schmidt Conversion of Aldehydes to Nitriles Using Azidotrimethylsilane in 1,1,1,3,3,3-Hexafluoro-2-propanol.
    Motiwala HF; Yin Q; Aubé J
    Molecules; 2015 Dec; 21(1):E45. PubMed ID: 26729081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia.
    Vilím J; Knaus T; Mutti FG
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14240-14244. PubMed ID: 30176101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chemoselective, one-pot transformation of aldehydes to nitriles.
    Laulhé S; Gori SS; Nantz MH
    J Org Chem; 2012 Oct; 77(20):9334-7. PubMed ID: 22928794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-Metal-Free Deacylative Cleavage of Unstrained C(sp(3))-C(sp(2)) Bonds: Cyanide-Free Access to Aryl and Aliphatic Nitriles from Ketones and Aldehydes.
    Ge JJ; Yao CZ; Wang MM; Zheng HX; Kang YB; Li Y
    Org Lett; 2016 Jan; 18(2):228-31. PubMed ID: 26704699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascade Process for Direct Transformation of Aldehydes (RCHO) to Nitriles (RCN) Using Inorganic Reagents NH
    Fang WY; Qin HL
    J Org Chem; 2019 May; 84(9):5803-5812. PubMed ID: 30868885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient cyanoimidation of aldehydes.
    Yin P; Ma WB; Chen Y; Huang WC; Deng Y; He L
    Org Lett; 2009 Dec; 11(23):5482-5. PubMed ID: 19943701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H
    Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct oxidative conversion of methylarenes into aromatic nitriles.
    Tsuchiya D; Kawagoe Y; Moriyama K; Togo H
    Org Lett; 2013 Aug; 15(16):4194-7. PubMed ID: 23901827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.