These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33796121)
1. Corrigendum: Different Functions of Recombinantly Expressed Domains of Tenascin-C in Glial Scar Formation. Bijelić D; Adžić M; Perić M; Jakovčevski I; Förster E; Schachner M; Andjus PR Front Immunol; 2021; 12():672476. PubMed ID: 33796121 [TBL] [Abstract][Full Text] [Related]
2. Corrigendum: Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Yang T; Dai Y; Chen G; Cui S Front Cell Neurosci; 2020; 14():270. PubMed ID: 33132841 [TBL] [Abstract][Full Text] [Related]
3. Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice. Schreiber J; Schachner M; Schumacher U; Lorke DE Acta Histochem; 2013 Oct; 115(8):865-78. PubMed ID: 23701962 [TBL] [Abstract][Full Text] [Related]
4. Tenascin-C expression by neurons and glial cells in the rat spinal cord: changes during postnatal development and after dorsal root or sciatic nerve injury. Zhang Y; Anderson PN; Campbell G; Mohajeri H; Schachner M; Lieberman AR J Neurocytol; 1995 Aug; 24(8):585-601. PubMed ID: 7595667 [TBL] [Abstract][Full Text] [Related]
5. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. Tang X; Davies JE; Davies SJ J Neurosci Res; 2003 Feb; 71(3):427-44. PubMed ID: 12526031 [TBL] [Abstract][Full Text] [Related]
6. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Wang SM; Hsu JC; Ko CY; Chiu NE; Kan WM; Lai MD; Wang JM Mol Neurobiol; 2016 Nov; 53(9):5912-5927. PubMed ID: 26510742 [TBL] [Abstract][Full Text] [Related]
7. Effect of CLIP3 Upregulation on Astrocyte Proliferation and Subsequent Glial Scar Formation in the Rat Spinal Cord via STAT3 Pathway After Injury. Chen X; Chen C; Hao J; Zhang J; Zhang F J Mol Neurosci; 2018 Jan; 64(1):117-128. PubMed ID: 29218499 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system. Deckner M; Lindholm T; Cullheim S; Risling M Exp Neurol; 2000 Dec; 166(2):350-62. PubMed ID: 11085900 [TBL] [Abstract][Full Text] [Related]
9. Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat. Fujimoto Y; Yamasaki T; Tanaka N; Mochizuki Y; Kajihara H; Ikuta Y; Ochi M Eur Spine J; 2006 Feb; 15(2):223-33. PubMed ID: 16292632 [TBL] [Abstract][Full Text] [Related]
10. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Yang T; Dai Y; Chen G; Cui S Front Cell Neurosci; 2020; 14():78. PubMed ID: 32317938 [TBL] [Abstract][Full Text] [Related]
11. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Li J; Jia Z; Xu W; Guo W; Zhang M; Bi J; Cao Y; Fan Z; Li G Life Sci; 2019 Apr; 222():148-157. PubMed ID: 30851336 [TBL] [Abstract][Full Text] [Related]
12. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079 [TBL] [Abstract][Full Text] [Related]
13. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Chen CH; Sung CS; Huang SY; Feng CW; Hung HC; Yang SN; Chen NF; Tai MH; Wen ZH; Chen WF Exp Neurol; 2016 Apr; 278():27-41. PubMed ID: 26828688 [TBL] [Abstract][Full Text] [Related]
14. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Yuan J; Liu W; Zhu H; Chen Y; Zhang X; Li L; Chu W; Wen Z; Feng H; Lin J Brain Res; 2017 Jan; 1655():90-103. PubMed ID: 27865778 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of glial proliferation, promotion of axonal growth and myelin production by synthetic glycolipid: A new approach for spinal cord injury treatment. García-Álvarez I; Fernández-Mayoralas A; Moreno-Lillo S; Sánchez-Sierra M; Nieto-Sampedro M; Doncel-Pérez E Restor Neurol Neurosci; 2015; 33(6):895-910. PubMed ID: 26484699 [TBL] [Abstract][Full Text] [Related]
16. Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats. Lee JS; Hsu YH; Chiu YS; Jou IM; Chang MS J Neuroinflammation; 2020 May; 17(1):156. PubMed ID: 32408881 [TBL] [Abstract][Full Text] [Related]
17. PPP1CC is associated with astrocyte and microglia proliferation after traumatic spinal cord injury in rats. Liu X; Huang S; Liu C; Liu X; Shen Y; Cui Z Pathol Res Pract; 2017 Nov; 213(11):1355-1364. PubMed ID: 29033188 [TBL] [Abstract][Full Text] [Related]
18. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice. Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310 [TBL] [Abstract][Full Text] [Related]
19. Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Wiemann S; Reinhard J; Faissner A Biochem Soc Trans; 2019 Dec; 47(6):1651-1660. PubMed ID: 31845742 [TBL] [Abstract][Full Text] [Related]
20. Targeting miR-106-3p facilitates functional recovery via inactivating inflammatory microglia and interfering glial scar component deposition after neural injury. Yang YH; Zhu J Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):9000-9008. PubMed ID: 31696488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]