These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33796363)

  • 1. Efficient numerical modelling of time-domain light propagation in curved 3D absorbing and scattering media with finite differences.
    Allali A; Klose AD; Bérubé-Lauzière Y
    Biomed Opt Express; 2021 Mar; 12(3):1422-1436. PubMed ID: 33796363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving analytically the simplified spherical harmonics equations in cylindrical turbid media.
    Edjlali E; Bérubé-Lauzière Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1633-1644. PubMed ID: 30182999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.
    Asllanaj F; Contassot-Vivier S; Liemert A; Kienle A
    J Biomed Opt; 2014 Jan; 19(1):15002. PubMed ID: 24390371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue.
    Montejo LD; Klose AD; Hielscher AH
    Biomed Opt Express; 2010 Sep; 1(3):861-878. PubMed ID: 21258514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model.
    Borjkhani H; Setarehdan SK
    Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent modeling of boundaries in acoustic finite-difference time-domain simulations.
    Häggblad J; Engquist B
    J Acoust Soc Am; 2012 Sep; 132(3):1303-10. PubMed ID: 22978858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects.
    Bouza Domínguez J; Bérubé-Lauzière Y
    Appl Opt; 2010 Mar; 49(8):1414-29. PubMed ID: 20220899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to implement absorbing boundary condition in biomolecular electrostatics.
    Goni MO
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):799-804. PubMed ID: 24091411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light transport in tissue by 3D Monte Carlo: influence of boundary voxelization.
    Binzoni T; Leung TS; Giust R; Rüfenacht D; Gandjbakhche AH
    Comput Methods Programs Biomed; 2008 Jan; 89(1):14-23. PubMed ID: 18045725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of highly efficient absorbing boundary conditions for the beam propagation method.
    Jiménez D; Pérez-Murano F
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):2015-25. PubMed ID: 11488508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of light fluence rate distribution in photodynamic therapy using finite-element method.
    Li J; Zhu TC; Finlay JC
    Proc SPIE Int Soc Opt Eng; 2006 Jan; 6139():. PubMed ID: 26113755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.
    Ying W; Henriquez CS
    J Comput Phys; 2007 Dec; 227(2):1046-1074. PubMed ID: 23519600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The finite element method for the propagation of light in scattering media: boundary and source conditions.
    Schweiger M; Arridge SR; Hiraoka M; Delpy DT
    Med Phys; 1995 Nov; 22(11 Pt 1):1779-92. PubMed ID: 8587533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Numerical Techniques for Solving the Current Injection Problem in Biological Tissues.
    Hyde DE; Dannhauer M; Warfield SK; MacLeod R; Brooks DH
    Proc IEEE Int Symp Biomed Imaging; 2016 Apr; 2016():876-880. PubMed ID: 28479960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media.
    Yan S; Tran AP; Fang Q
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30788914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for the calculation of unsaturated-saturated water flow by coupling the FEM and FDM.
    Gao Y; Pu S; Zheng C; Yi S
    Sci Rep; 2019 Oct; 9(1):14995. PubMed ID: 31628377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coupled finite element-boundary element method for modeling Diffusion equation in 3D multi-modality optical imaging.
    Srinivasan S; Ghadyani HR; Pogue BW; Paulsen KD
    Biomed Opt Express; 2010 Sep; 1(2):398-413. PubMed ID: 21152113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.
    Jeong D; Kim J
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):117. PubMed ID: 26577816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.