These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33796821)
1. Development and validation of high definition phenotype-based mortality prediction in critical care units. Sun Y; Kaur R; Gupta S; Paul R; Das R; Cho SJ; Anand S; Boutilier JJ; Saria S; Palma J; Saluja S; McAdams RM; Kaur A; Yadav G; Singh H JAMIA Open; 2021 Jan; 4(1):ooab004. PubMed ID: 33796821 [TBL] [Abstract][Full Text] [Related]
2. Neonatal mortality risk assessment using SNAPPE- II score in a neonatal intensive care unit. Muktan D; Singh RR; Bhatta NK; Shah D BMC Pediatr; 2019 Aug; 19(1):279. PubMed ID: 31409303 [TBL] [Abstract][Full Text] [Related]
3. Utilization of SNAP II and SNAPPE II Scores for Predicting the Mortality Rate Among a Cohort of Iranian Newborns. Radfar M; Hashemieh M; Fallahi M; Masihi R Arch Iran Med; 2018 Apr; 21(4):153-157. PubMed ID: 29693405 [TBL] [Abstract][Full Text] [Related]
4. The Clinical Risk Index for Babies II for Prediction of Time-Dependent Mortality and Short-Term Morbidities in Very Low Birth Weight Infants. Lee SM; Lee MH; Chang YS; Neonatology; 2019; 116(3):244-251. PubMed ID: 31307048 [TBL] [Abstract][Full Text] [Related]
5. Generalization of a Deep Learning Model for Continuous Glucose Monitoring-Based Hypoglycemia Prediction: Algorithm Development and Validation Study. Shao J; Pan Y; Kou WB; Feng H; Zhao Y; Zhou K; Zhong S JMIR Med Inform; 2024 May; 12():e56909. PubMed ID: 38801705 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning Algorithms to Predict Mortality of Neonates on Mechanical Intubation for Respiratory Failure. Hsu JF; Yang C; Lin CY; Chu SM; Huang HR; Chiang MC; Wang HC; Liao WC; Fu RH; Tsai MH Biomedicines; 2021 Oct; 9(10):. PubMed ID: 34680497 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease. Maheshwari S; Agarwal A; Shukla A; Tiwari R Biomed Tech (Berl); 2020 Aug; 65(4):435-446. PubMed ID: 31846424 [TBL] [Abstract][Full Text] [Related]
8. SNAPPE II Score as a Predictor of Neonatal Mortality in NICU at a Tertiary Care Hospital in Pakistan. Ali A; Ariff S; Rajani R; Khowaja WH; Leghari AL; Wali S; Barkat R; Rahim A Cureus; 2021 Dec; 13(12):e20427. PubMed ID: 35047264 [TBL] [Abstract][Full Text] [Related]
9. SNAPPE-II (Score for Neonatal Acute Physiology with Perinatal Extension-II) in Predicting Mortality and Morbidity in NICU. Harsha SS; Archana BR J Clin Diagn Res; 2015 Oct; 9(10):SC10-2. PubMed ID: 26557585 [TBL] [Abstract][Full Text] [Related]
10. Histologic chorioamnionitis and severity of illness in very low birth weight newborns. De Felice C; Toti P; Parrini S; Del Vecchio A; Bagnoli F; Latini G; Kopotic RJ Pediatr Crit Care Med; 2005 May; 6(3):298-302. PubMed ID: 15857528 [TBL] [Abstract][Full Text] [Related]
11. A comparison of neonatal mortality risk prediction models in very low birth weight infants. Pollack MM; Koch MA; Bartel DA; Rapoport I; Dhanireddy R; El-Mohandes AA; Harkavy K; Subramanian KN Pediatrics; 2000 May; 105(5):1051-7. PubMed ID: 10790462 [TBL] [Abstract][Full Text] [Related]
12. Assessing mortality risk in very low birthweight infants: a comparison of CRIB, CRIB-II, and SNAPPE-II. Gagliardi L; Cavazza A; Brunelli A; Battaglioli M; Merazzi D; Tandoi F; Cella D; Perotti GF; Pelti M; Stucchi I; Frisone F; Avanzini A; Bellù R Arch Dis Child Fetal Neonatal Ed; 2004 Sep; 89(5):F419-22. PubMed ID: 15321961 [TBL] [Abstract][Full Text] [Related]
13. A deep LSTM autoencoder-based framework for predictive maintenance of a proton radiotherapy delivery system. Dou T; Clasie B; Depauw N; Shen T; Brett R; Lu HM; Flanz JB; Jee KW Artif Intell Med; 2022 Oct; 132():102387. PubMed ID: 36207077 [TBL] [Abstract][Full Text] [Related]
14. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
15. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
16. Predicting readmission to the cardiovascular intensive care unit using recurrent neural networks. Kessler S; Schroeder D; Korlakov S; Hettlich V; Kalkhoff S; Moazemi S; Lichtenberg A; Schmid F; Aubin H Digit Health; 2023; 9():20552076221149529. PubMed ID: 36644663 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the Clinical Risk Index for Babies (CRIB) II Score for Mortality Prediction in Preterm Newborns: A Prospective Observational Study at a Tertiary Care Hospital. Bhandekar H; Bansode Bangartale S; Arora I Cureus; 2024 Apr; 16(4):e58672. PubMed ID: 38770515 [TBL] [Abstract][Full Text] [Related]
18. Evaluating illness severity for very low birth weight infants: CRIB or CRIB-II? De Felice C; Del Vecchio A; Latini G J Matern Fetal Neonatal Med; 2005 Apr; 17(4):257-60. PubMed ID: 16147834 [TBL] [Abstract][Full Text] [Related]
19. A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit. Xia J; Pan S; Zhu M; Cai G; Yan M; Su Q; Yan J; Ning G Comput Math Methods Med; 2019; 2019():8152713. PubMed ID: 31827589 [TBL] [Abstract][Full Text] [Related]
20. SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. Richardson DK; Corcoran JD; Escobar GJ; Lee SK J Pediatr; 2001 Jan; 138(1):92-100. PubMed ID: 11148519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]