BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33796891)

  • 1. The role of protein hydrolysates in prolonging viability and enhancing antibody production of CHO cells.
    Obaidi I; Mota LM; Quigley A; Butler M
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3115-3129. PubMed ID: 33796891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioactivity and fractionation of peptide hydrolysates in cultures of CHO cells.
    Spearman M; Lodewyks C; Richmond M; Butler M
    Biotechnol Prog; 2014; 30(3):584-93. PubMed ID: 24846804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells.
    Ho SC; Nian R; Woen S; Chng J; Zhang P; Yang Y
    J Biosci Bioeng; 2016 Oct; 122(4):499-506. PubMed ID: 27067279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategic feeding of NS0 and CHO cell cultures to control glycan profiles and immunogenic epitopes of monoclonal antibodies.
    Villacrés C; Tayi VS; Butler M
    J Biotechnol; 2021 Jun; 333():49-62. PubMed ID: 33901620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usability of size-excluded fractions of soy protein hydrolysates for growth and viability of Chinese hamster ovary cells in protein-free suspension culture.
    Chun BH; Kim JH; Lee HJ; Chung N
    Bioresour Technol; 2007 Mar; 98(5):1000-5. PubMed ID: 16797979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.
    Spearman M; Chan S; Jung V; Kowbel V; Mendoza M; Miranda V; Butler M
    J Biotechnol; 2016 Sep; 233():129-42. PubMed ID: 27165505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity.
    Park JH; Noh SM; Woo JR; Kim JW; Lee GM
    Biotechnol J; 2016 Mar; 11(4):487-96. PubMed ID: 26663903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of protein and carbohydrate contents of soy protein hydrolysates on cell density and IgG production in animal cell cultures.
    Gupta AJ; Wierenga PA; Gruppen H; Boots JW
    Biotechnol Prog; 2015; 31(5):1396-405. PubMed ID: 26080927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments.
    Kim SH; Lee GM
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):639-48. PubMed ID: 19266194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells.
    Sung YH; Lim SW; Chung JY; Lee GM
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):527-36. PubMed ID: 12856163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of iron addition on mAb productivity and oxidative stress in Chinese hamster ovary culture.
    Graham RJ; Mohammad A; Liang G; Fu Q; Kuang B; Polanco A; Lee YS; Marcus RK; Yoon S
    Biotechnol Prog; 2021 Sep; 37(5):e3181. PubMed ID: 34106525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells.
    Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ
    Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of heat treatments on the functionality of soy protein hydrolysates in animal cell cultures.
    Gupta AJ; Boots JW; Gruppen H; Wierenga PA
    Food Chem; 2023 Dec; 429():136914. PubMed ID: 37480781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the impact of cottonseed hydrolysates on CHO cell culture performance through transcriptomic analysis.
    Kumar S; Dhara VG; Orzolek LD; Hao H; More AJ; Lau EC; Betenbaugh MJ
    Appl Microbiol Biotechnol; 2021 Jan; 105(1):271-285. PubMed ID: 33201275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy-inducing peptide increases CHO cell monoclonal antibody production in batch and fed-batch cultures.
    Braasch K; Kryworuchko M; Piret JM
    Biotechnol Bioeng; 2021 May; 118(5):1876-1883. PubMed ID: 33543765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells.
    Kishishita S; Katayama S; Kodaira K; Takagi Y; Matsuda H; Okamoto H; Takuma S; Hirashima C; Aoyagi H
    J Biosci Bioeng; 2015 Jul; 120(1):78-84. PubMed ID: 25678240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in efficiency of media utilization for recombinant protein production in Chinese hamster ovary culture through dilution.
    Thombre S; Gadgil M
    Biotechnol Appl Biochem; 2011; 58(1):25-31. PubMed ID: 21446956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small molecule epigenetic modulators for enhancing recombinant antibody production in CHO cell cultures.
    Kim D; Yoon C; Lee GM
    Biotechnol Bioeng; 2022 Mar; 119(3):820-831. PubMed ID: 34961935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomics analysis of soy hydrolysates for the identification of productivity markers of mammalian cells for manufacturing therapeutic proteins.
    Richardson J; Shah B; Bondarenko PV; Bhebe P; Zhang Z; Nicklaus M; Kombe MC
    Biotechnol Prog; 2015; 31(2):522-31. PubMed ID: 25583076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells.
    Galbraith DJ; Tait AS; Racher AJ; Birch JR; James DC
    Biotechnol Prog; 2006; 22(3):753-62. PubMed ID: 16739959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.