These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33797153)

  • 1. Riboswitch control of bacterial RNA stability.
    Richards J; Belasco JG
    Mol Microbiol; 2021 Aug; 116(2):361-365. PubMed ID: 33797153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-acting riboswitch control of translation initiation and mRNA decay.
    Caron MP; Bastet L; Lussier A; Simoneau-Roy M; Massé E; Lafontaine DA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3444-53. PubMed ID: 23169642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability.
    Pursley BR; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread Protection of RNA Cleavage Sites by a Riboswitch Aptamer that Folds as a Compact Obstacle to Scanning by RNase E.
    Richards J; Belasco JG
    Mol Cell; 2021 Jan; 81(1):127-138.e4. PubMed ID: 33212019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect control of Rho-dependent transcription termination by the
    Ghosh T; Jahangirnejad S; Chauvier A; Stringer AM; Korepanov AP; Côté JP; Wade JT; Lafontaine DA
    RNA; 2024 Mar; 30(4):381-391. PubMed ID: 38253429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-acting glmS catalytic riboswitch: locked and loaded.
    Tinsley RA; Furchak JR; Walter NG
    RNA; 2007 Apr; 13(4):468-77. PubMed ID: 17283212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from
    Liu L; Luo D; Zhang Y; Liu D; Yin K; Tang Q; Chou S-H; He J
    Microbiol Spectr; 2024 Jul; 12(7):e0045024. PubMed ID: 38819160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis.
    Shahbabian K; Jamalli A; Zig L; Putzer H
    EMBO J; 2009 Nov; 28(22):3523-33. PubMed ID: 19779461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch.
    Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A
    J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic di-GMP Regulates TfoY in Vibrio cholerae To Control Motility by both Transcriptional and Posttranscriptional Mechanisms.
    Pursley BR; Maiden MM; Hsieh ML; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bacterial yjdF riboswitch regulates translation through its tRNA-like fold.
    Trachman RJ; Passalacqua LFM; Ferré-D'Amaré AR
    J Biol Chem; 2022 Jun; 298(6):101934. PubMed ID: 35427649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning riboswitch regulation through conformational selection.
    Wilson RC; Smith AM; Fuchs RT; Kleckner IR; Henkin TM; Foster MP
    J Mol Biol; 2011 Jan; 405(4):926-38. PubMed ID: 21075119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements.
    Brooks KM; Hampel KJ
    Biochemistry; 2011 Apr; 50(13):2424-33. PubMed ID: 21395279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maestro of regulation: Riboswitches orchestrate gene expression at the levels of translation, transcription and mRNA decay.
    Bastet L; Turcotte P; Wade JT; Lafontaine DA
    RNA Biol; 2018; 15(6):679-682. PubMed ID: 29537923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboswitch distribution, structure, and function in bacteria.
    Pavlova N; Kaloudas D; Penchovsky R
    Gene; 2019 Aug; 708():38-48. PubMed ID: 31128223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.