BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33797235)

  • 1. Propeptide in
    Wang S; Xu Y; Yu XW
    J Agric Food Chem; 2021 Apr; 69(14):4263-4275. PubMed ID: 33797235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phenylalanine dynamic switch controls the interfacial activation of Rhizopus chinensis lipase.
    Wang S; Xu Y; Yu XW
    Int J Biol Macromol; 2021 Mar; 173():1-12. PubMed ID: 33476612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression in Pichia pastoris and characterization of Rhizomucor miehei lipases containing a new propeptide region.
    Wang Z; Lv P; Luo W; Yuan Z; He D
    J Gen Appl Microbiol; 2016; 62(1):25-30. PubMed ID: 26923128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis by Which the N-Terminal Polypeptide Segment of
    Zhang M; Yu XW; Xu Y; Guo RT; Swapna GVT; Szyperski T; Hunt JF; Montelione GT
    Biochemistry; 2019 Sep; 58(38):3943-3954. PubMed ID: 31436959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.
    Yu XW; Zhu SS; Xiao R; Xu Y
    J Lipid Res; 2014 Jun; 55(6):1044-51. PubMed ID: 24670990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.
    Zhu SS; Li M; Yu X; Xu Y
    Appl Biochem Biotechnol; 2013 May; 170(2):436-47. PubMed ID: 23546870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris.
    Yang M; Yu XW; Zheng H; Sha C; Zhao C; Qian M; Xu Y
    Microb Cell Fact; 2015 Mar; 14():40. PubMed ID: 25880561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.
    Yu XW; Tan NJ; Xiao R; Xu Y
    PLoS One; 2012; 7(10):e46388. PubMed ID: 23056295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of Chain-Length Selectivity and Thermostability of
    Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359
    [No Abstract]   [Full Text] [Related]  

  • 10. Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling.
    Klein RR; King G; Moreau RA; Haas MJ
    Lipids; 1997 Feb; 32(2):123-30. PubMed ID: 9075201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme.
    Syal P; Verma VV; Gupta R
    Int J Biol Macromol; 2017 Nov; 104(Pt A):78-88. PubMed ID: 28583872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii.
    Yu XW; Yang M; Jiang C; Zhang X; Xu Y
    J Agric Food Chem; 2017 Jul; 65(29):6009-6015. PubMed ID: 28681607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants.
    Beer HD; Wohlfahrt G; McCarthy JE; Schomburg D; Schmid RD
    Protein Eng; 1996 Jun; 9(6):507-17. PubMed ID: 8862551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis.
    Joerger RD; Haas MJ
    Lipids; 1994 Jun; 29(6):377-84. PubMed ID: 8090057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of mutations in the lid region of Thermomyces lanuginosus lipase on interactions with triglyceride surfaces: A multi-scale simulation study.
    Willems N; Lelimousin M; Skjold-Jørgensen J; Svendsen A; Sansom MSP
    Chem Phys Lipids; 2018 Mar; 211():4-15. PubMed ID: 28818576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Propeptide-mediated protein folding: mechanism and its impact on lipase].
    Tian M; Zhang J; Luo W; Wang Z; Fu J; Huang S; Lü P
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):88-99. PubMed ID: 33501792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory.
    Satomura A; Kuroda K; Ueda M
    PLoS One; 2015; 10(5):e0124545. PubMed ID: 25970342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis.
    Chen G; Zhang Q; Chen H; Lu Q; Miao M; Campanella OH; Feng B
    Int J Biol Macromol; 2020 Jul; 154():1314-1323. PubMed ID: 31733249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled effects of salt and pressure on catalytic ability of Rhizopus chinensis lipase.
    Chen G; Wang L; Miao M; Jia C; Feng B
    J Sci Food Agric; 2017 Dec; 97(15):5381-5387. PubMed ID: 28500670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection effect of polyols on Rhizopus chinensis lipase counteracting the deactivation from high pressure and high temperature treatment.
    Chen G; Zhang Q; Lu Q; Feng B
    Int J Biol Macromol; 2019 Apr; 127():555-562. PubMed ID: 30664969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.