BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33797239)

  • 1. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications.
    Adelnia H; Tran HDN; Little PJ; Blakey I; Ta HT
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2083-2105. PubMed ID: 33797239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogels Based on Poly(aspartic acid): Synthesis and Applications.
    Adelnia H; Blakey I; Little PJ; Ta HT
    Front Chem; 2019; 7():755. PubMed ID: 31799235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal ion chelation of poly(aspartic acid): From scale inhibition to therapeutic potentials.
    Adelnia H; Sirous F; Blakey I; Ta HT
    Int J Biol Macromol; 2023 Feb; 229():974-993. PubMed ID: 36584782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(aspartic acid) with adjustable pH-dependent solubility.
    Németh C; Gyarmati B; Abdullin T; László K; Szilágyi A
    Acta Biomater; 2017 Feb; 49():486-494. PubMed ID: 27915021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(succinimide) nanoparticles as reservoirs for spontaneous and sustained synthesis of poly(aspartic acid) under physiological conditions: potential for vascular calcification therapy and oral drug delivery.
    Adelnia H; Blakey I; Little PJ; Ta HT
    J Mater Chem B; 2023 Mar; 11(12):2650-2662. PubMed ID: 36655707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.
    Juriga D; Nagy K; Jedlovszky-Hajdú A; Perczel-Kovách K; Chen YM; Varga G; Zrínyi M
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23463-76. PubMed ID: 27541725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and swelling properties of novel pH-sensitive poly(aspartic acid) gels.
    Gyenes T; Torma V; Gyarmati B; Zrínyi M
    Acta Biomater; 2008 May; 4(3):733-44. PubMed ID: 18280800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material.
    Fontana-Escartín A; Ruano G; Silva FM; Estrany F; Puiggalí J; Alemán C; Torras J
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications.
    Hu Y; Li Y; Xu FJ
    Acc Chem Res; 2017 Feb; 50(2):281-292. PubMed ID: 28068064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of poly(L-lactic acid-co-ethylene oxide-co-aspartic acid) and its interaction with cells.
    Karal-Yilmaz O; Kayaman-Apohan N; Misirli Z; Baysal K; Baysal BM
    J Mater Sci Mater Med; 2006 Mar; 17(3):213-27. PubMed ID: 16555113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer.
    Arimura H; Ohya Y; Ouchi T
    Biomacromolecules; 2005; 6(2):720-5. PubMed ID: 15762635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications.
    Wang L; Li Y; Yang J; Wu Q; Liang S; Liu Z
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, complex formation and corneal permeation of cyclodextrin-modified, thiolated poly(aspartic acid) as self-gelling formulation of dexamethasone.
    Gyarmati B; Dargó G; Áron Szilágyi B; Vincze A; Facskó R; Budai-Szűcs M; Kiss EL; Szente L; Szilágyi A; Balogh GT
    Eur J Pharm Biopharm; 2022 May; 174():1-9. PubMed ID: 35341942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications.
    Cai Z; Wan Y; Becker ML; Long YZ; Dean D
    Biomaterials; 2019 Jul; 208():45-71. PubMed ID: 30991217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.
    Vega-Chacón J; Arbeláez MIA; Jorge JH; Marques RFC; Jafelicci M
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():366-373. PubMed ID: 28532042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypeptide-based self-healing hydrogels: Design and biomedical applications.
    Cai L; Liu S; Guo J; Jia YG
    Acta Biomater; 2020 Sep; 113():84-100. PubMed ID: 32634482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials.
    Yu W; Maynard E; Chiaradia V; Arno MC; Dove AP
    Chem Rev; 2021 Sep; 121(18):10865-10907. PubMed ID: 33591164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a novel zwitterionic biodegradable poly (α,β-L-aspartic acid) derivative with some L-histidine side-residues and its resistance to non-specific protein adsorption.
    Wang X; Wu G; Lu C; Wang Y; Fan Y; Gao H; Ma J
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):237-41. PubMed ID: 21536417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides.
    Yin Q; Yin L; Wang H; Cheng J
    Acc Chem Res; 2015 Jul; 48(7):1777-87. PubMed ID: 26065588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable polymers as biomaterials.
    Pişkin E
    J Biomater Sci Polym Ed; 1995; 6(9):775-95. PubMed ID: 7772566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.