BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33797363)

  • 1. Safe and Effective Kinase Inhibitors for the Treatment of Gynecological Cancers: In Silico Approach.
    Patil VM; Kumar A; Anand V; Bansal P; Masand N
    Curr Drug Metab; 2021; 22(7):537-549. PubMed ID: 33797363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer.
    Diaz-Padilla I; Duran I; Clarke BA; Oza AM
    Cancer Treat Rev; 2012 Oct; 38(6):767-75. PubMed ID: 22381585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-angiogenic drugs currently in Phase II clinical trials for gynecological cancer treatment.
    Wei XW; Zhang ZR; Wei YQ
    Expert Opin Investig Drugs; 2013 Sep; 22(9):1181-92. PubMed ID: 23782133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical development of WEE1 inhibitors in gynecological cancers: A systematic review.
    Schutte T; Embaby A; Steeghs N; van der Mierden S; van Driel W; Rijlaarsdam M; Huitema A; Opdam F
    Cancer Treat Rev; 2023 Apr; 115():102531. PubMed ID: 36893690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Docking, G-QSAR Studies, Synthesis and Anticancer Screening of Some New 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors.
    Kale MA; Sonwane GM
    Curr Drug Discov Technol; 2020; 17(2):213-224. PubMed ID: 30210004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development.
    Hameed R; Khan A; Khan S; Perveen S
    Anticancer Agents Med Chem; 2019; 19(5):592-598. PubMed ID: 30306880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Therapeutic Potential of MEK1/2 Inhibitors in the Treatment of Gynecological Cancers: Rational Strategies and Recent Progress.
    Ghanaatgar-Kasbi S; Khazaei M; Rastgar-Moghadam A; Ferns GA; Hassanian SM; Avan A
    Curr Cancer Drug Targets; 2020; 20(6):417-428. PubMed ID: 32329688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of anticancer agents in gynecological oncology during pregnancy: a systematic review of maternal pharmacokinetics and transplacental transfer.
    Berveiller P; Marty O; Vialard F; Mir O
    Expert Opin Drug Metab Toxicol; 2016 May; 12(5):523-31. PubMed ID: 27020922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBβ).
    Davis GD; Vasanthi AH
    Eur J Pharm Sci; 2015 Aug; 76():110-8. PubMed ID: 25936945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of Medicinal Plants and Constituents in Gynecological Cancer Therapy: Current Literature and Future Directions.
    Akkol EK; Dereli FTG; Sobarzo-Sánchez E; Khan H
    Curr Top Med Chem; 2020; 20(20):1772-1790. PubMed ID: 32297581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance.
    Mortazavi H; Nikfar B; Esmaeili SA; Rafieenia F; Saburi E; Chaichian S; Heidari Gorji MA; Momtazi-Borojeni AA
    Eur J Med Chem; 2020 Feb; 187():111951. PubMed ID: 31821990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there a future for Aurora kinase inhibitors for anticancer therapy?
    Carpinelli P; Moll J
    Curr Opin Drug Discov Devel; 2009 Jul; 12(4):533-42. PubMed ID: 19562649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.
    Chaudhari P; Bari S
    Mol Divers; 2016 Feb; 20(1):41-53. PubMed ID: 26416560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of mTOR Pathway Inhibitors in Gynecologic Cancer.
    de Melo AC; Paulino E; Garces ÁH
    Oxid Med Cell Longev; 2017; 2017():4809751. PubMed ID: 28286604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COX-2-PGE
    Ye Y; Wang X; Jeschke U; von Schönfeldt V
    Arch Gynecol Obstet; 2020 Jun; 301(6):1365-1375. PubMed ID: 32363546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of toll-like receptors in treatment of gynecological cancers.
    Moradi-Marjaneh R; Hassanian SM; Hasanzadeh M; Rezayi M; Maftouh M; Mehramiz M; Ferns GA; Khazaei M; Avan A
    IUBMB Life; 2019 May; 71(5):549-564. PubMed ID: 30729633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico design, synthesis and activity of potential drug-like chrysin scaffold-derived selective EGFR inhibitors as anticancer agents.
    Debnath S; Kanakaraju M; Islam M; Yeeravalli R; Sen D; Das A
    Comput Biol Chem; 2019 Dec; 83():107156. PubMed ID: 31710991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abelson tyrosine-protein kinase 1 as principal target for drug discovery against leukemias. Role of the current computer-aided drug design methodologies.
    Speck-Planche A; Luan F; Cordeiro MN
    Curr Top Med Chem; 2012; 12(24):2745-62. PubMed ID: 23368101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Abnormalities of DNA repair and gynecological cancers].
    Auguste A; Leary A
    Bull Cancer; 2017 Nov; 104(11):971-980. PubMed ID: 29054544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of target small molecule tyrosine kinase inhibitors that need monitoring and clinical application of protocol for early detection of cancer therapeutics-related cardiac dysfunction using signal detection: An investigation of real world data.
    Mizuno T; Sakai T; Tanabe K; Kozaki K; Umemura T; Higashikawa M; Kimura T; Yamada T; Goto N; Ohtsu F
    J Oncol Pharm Pract; 2021 Jun; 27(4):804-814. PubMed ID: 32539664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.