BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33797672)

  • 1. On the ordered nature of redistribution of technogenic elements in undisturbed elementary landscape-geochemical systems of the temperate zone on the example of the Chernobyl
    Korobova E; Romanov S; Bech JB; Berezkin V; Dolgushin D; Baranchukov V; Dogadkin N
    Environ Geochem Health; 2022 May; 44(5):1537-1549. PubMed ID: 33797672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regularities of
    Dolgushin DI; Korobova EM; Baranchukov VS
    Environ Geochem Health; 2023 Dec; 45(12):9231-9244. PubMed ID: 36207577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed study of post-Chernobyl Cs-137 redistribution in the soils of a small agricultural catchment (Tula region, Russia).
    Zhidkin AP; Shamshurina EN; Golosov VN; Komissarov MA; Ivanova NN; Ivanov MM
    J Environ Radioact; 2020 Nov; 223-224():106386. PubMed ID: 32911271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing the deposition environment and long-term fate of Chernobyl
    Varley A; Tyler A; Bondar Y; Hosseini A; Zabrotski V; Dowdall M
    Environ Pollut; 2018 Sep; 240():191-199. PubMed ID: 29738947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and Temporal Reconstruction of Chernobyl (137)Cs Initial Fallout Field on Soil Within upper Lokna River Basin.
    Shamshurina EN; Golosov VN; Ivanov MM
    Radiats Biol Radioecol; 2016 Jul; 56(4):414-425. PubMed ID: 30703301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part I: activity-depth profiles of (134)Cs and (137)Cs.
    Schimmack W; Schultz W
    Sci Total Environ; 2006 Sep; 368(2-3):853-62. PubMed ID: 16674997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements and modelling of 137Cs distribution on ground due to the Chernobyl accident: a 27-y follow-up study in Northern Greece.
    Clouvas A; Xanthos S; Kadi S; Antonopoulos-Domis M
    Radiat Prot Dosimetry; 2014 Aug; 160(4):293-6. PubMed ID: 24262927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Distribution of ¹³⁷Cs in Soil of Spruce Forest in the Distant Zone of Chernobyl Fallout.
    Lipatov DN; Shcheglov AI; Manakhov DV; Tsvetnova OB
    Radiats Biol Radioecol; 2017 Jan; 57(1):86-97. PubMed ID: 30698936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global
    Ito E; Miura S; Aoyama M; Shichi K
    J Environ Radioact; 2020 Dec; 225():106421. PubMed ID: 33032006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative analysis of the radionuclide composition in fallout after the Chernobyl and the Fukushima accidents].
    Kotenko KV; Shinkarev SM; Abramov IuV; Granovskaia EO; Iatsenko VN; Gavrilin IuI; Margulis UIa; Garetskaia OS; Imanaka T; Khoshi M
    Med Tr Prom Ekol; 2012; (10):1-5. PubMed ID: 23210176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial patterns and ratios of ¹³⁷Cs, ⁹⁰Sr, and Pu isotopes in the top layer of undisturbed meadow soils as indicators for contamination origin.
    Lukšienė B; Puzas A; Remeikis V; Druteikienė R; Gudelis A; Gvozdaitė R; Buivydas Š; Davidonis R; Kandrotas G
    Environ Monit Assess; 2015 May; 187(5):268. PubMed ID: 25893760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of dose rate from Chernobyl-derived radiocaesium in Estonian soil.
    Lust M; Realo E
    J Environ Radioact; 2012 Oct; 112():118-24. PubMed ID: 22705415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variability of the dose rate from (137)Cs fallout in settlements in Russia and Belarus more than two decades after the Chernobyl accident.
    Bernhardsson C; Rääf CL; Mattsson S
    J Environ Radioact; 2015 Nov; 149():144-9. PubMed ID: 26245870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The (137)Cs accumulation by forest-derived products in the Gomel region.
    Bulko NI; Shabaleva MA; Kozlov AK; Tolkacheva NV; Mashkov IA
    J Environ Radioact; 2014 Jan; 127():150-4. PubMed ID: 23453660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of 129 I and 137 Cs in soils from Belarus and reconstruction of 131I deposition from the Chernobyl accident.
    Straume T; Anspaugh LR; Marchetti AA; Voigt G; Minenko V; Gu F; Men P; Trofimik S; Tretyakevich S; Drozdovitch V; Shagalova E; Zhukova O; Germenchuk M; Berlovich S
    Health Phys; 2006 Jul; 91(1):7-19. PubMed ID: 16775475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 10-year study of the 137Cs distribution in soil and a comparison of Cs soil inventory with precipitation-determined deposition.
    Isaksson M; Erlandsson B; Mattsson S
    J Environ Radioact; 2001; 55(1):47-59. PubMed ID: 11381552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition of
    Kalkan SK; Forkapić S; Marković BS; Gavrilov BM; Bikit-Schroeder K; Mrđa D; Radaković GM; Tošić R
    Chemosphere; 2021 Feb; 264(Pt 2):128471. PubMed ID: 33059286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twenty-year follow-up study of radiocesium migration in soil.
    Clouvas A; Xanthos S; Takoudis G; Antonopoulos-Domis M; Zinoviadis G; Vidmar T; Likar A
    Radiat Prot Dosimetry; 2007; 124(4):372-7. PubMed ID: 17525061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term investigations of post-Chernobyl radiocaesium in fallout and air in North Croatia.
    Franić Z; Sega K; Petrinec B; Marović G
    Environ Monit Assess; 2009 Jan; 148(1-4):315-23. PubMed ID: 18278563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty assessment method for the Cs-137 fallout inventory and penetration depth.
    Papadakos GN; Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2017 May; 171():234-245. PubMed ID: 28286303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.