These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 33797891)
1. Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. Gong H; Hu X; Liao M; Fa K; Ciumac D; Clifton LA; Sani MA; King SM; Maestro A; Separovic F; Waigh TA; Xu H; McBain AJ; Lu JR ACS Appl Mater Interfaces; 2021 Apr; 13(14):16062-16074. PubMed ID: 33797891 [TBL] [Abstract][Full Text] [Related]
2. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? Gong H; Hu X; Zhang L; Fa K; Liao M; Liu H; Fragneto G; Campana M; Lu JR J Colloid Interface Sci; 2023 May; 637():182-192. PubMed ID: 36701864 [TBL] [Abstract][Full Text] [Related]
3. Combination of a pH-responsive peptide amphiphile and a conventional antibiotic in treating Gram-negative bacteria. Liao M; Gong H; Liu H; Shen K; Ge T; King S; Schweins R; McBain AJ; Hu X; Lu JR J Colloid Interface Sci; 2024 Apr; 659():397-412. PubMed ID: 38183806 [TBL] [Abstract][Full Text] [Related]
4. Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility. Paracini N; Clifton LA; Skoda MWA; Lakey JH Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7587-E7594. PubMed ID: 30037998 [TBL] [Abstract][Full Text] [Related]
5. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955 [TBL] [Abstract][Full Text] [Related]
6. Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with Necula G; Bacalum M; Radu M Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768325 [TBL] [Abstract][Full Text] [Related]
7. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Mohanram H; Bhattacharjya S Antimicrob Agents Chemother; 2014; 58(4):1987-96. PubMed ID: 24419338 [TBL] [Abstract][Full Text] [Related]
8. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
9. Rational Design of Helix-Stabilized Antimicrobial Peptide Foldamers Containing α,α-Disubstituted Amino Acids or Side-Chain Stapling. Hirano M; Saito C; Goto C; Yokoo H; Kawano R; Misawa T; Demizu Y Chempluschem; 2020 Dec; 85(12):2731-2736. PubMed ID: 33369262 [TBL] [Abstract][Full Text] [Related]
10. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
11. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial peptide activity is anticorrelated with lipid a leaflet affinity. Nelson N; Opene B; Ernst RK; Schwartz DK PLoS One; 2020; 15(11):e0242907. PubMed ID: 33253275 [TBL] [Abstract][Full Text] [Related]
13. Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin. Michel JP; Wang YX; Kiesel I; Gerelli Y; Rosilio V Langmuir; 2017 Oct; 33(41):11028-11039. PubMed ID: 28921990 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Abellón-Ruiz J; Kaptan SS; Baslé A; Claudi B; Bumann D; Kleinekathöfer U; van den Berg B Nat Microbiol; 2017 Dec; 2(12):1616-1623. PubMed ID: 29038444 [TBL] [Abstract][Full Text] [Related]
16. Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Martínez de Tejada G; Sánchez-Gómez S; Rázquin-Olazaran I; Kowalski I; Kaconis Y; Heinbockel L; Andrä J; Schürholz T; Hornef M; Dupont A; Garidel P; Lohner K; Gutsmann T; David SA; Brandenburg K Curr Drug Targets; 2012 Aug; 13(9):1121-30. PubMed ID: 22664072 [TBL] [Abstract][Full Text] [Related]
17. Aggregated Amphiphilic Antimicrobial Peptides Embedded in Bacterial Membranes. Gong H; Liao M; Hu X; Fa K; Phanphak S; Ciumac D; Hollowell P; Shen K; Clifton LA; Campana M; Webster JRP; Fragneto G; Waigh TA; McBain AJ; Lu JR ACS Appl Mater Interfaces; 2020 Oct; 12(40):44420-44432. PubMed ID: 32909733 [TBL] [Abstract][Full Text] [Related]
18. Multiple Mechanisms of the Synthesized Antimicrobial Peptide TS against Gram-Negative Bacteria for High Efficacy Antibacterial Action In Vivo. Zhang R; Fan X; Jiang X; Zou M; Xiao H; Wu G Molecules; 2020 Dec; 26(1):. PubMed ID: 33374458 [TBL] [Abstract][Full Text] [Related]
19. Role of positively charged residues on the polar and non-polar faces of amphipathic α-helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens. Jiang Z; Mant CT; Vasil M; Hodges RS Chem Biol Drug Des; 2018 Jan; 91(1):75-92. PubMed ID: 28636788 [TBL] [Abstract][Full Text] [Related]