These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33798097)

  • 1. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions.
    Zhou ZQ; Xie SP; Zhang R
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33798097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associated impact mechanism of heavy rain and floods in the middle and lower reaches of the Yangtze river basin based on ocean-atmosphere anomaly patterns.
    Wang S; Wang Y; Zhang L; Xu M; Yao X; Wang X
    Sci Total Environ; 2024 Oct; 946():174067. PubMed ID: 38908608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oceanic and atmospheric anomalies associated with extreme precipitation events in China 1983-2020.
    Lee YC; Wenig MO; Chan KL
    Air Qual Atmos Health; 2023; 16(5):881-895. PubMed ID: 37213470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño.
    Peng Q; Xie SP; Wang D; Zheng XT; Zhang H
    Nat Commun; 2019 Jan; 10(1):298. PubMed ID: 30655541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment.
    Mokria M; Gebrekirstos A; Abiyu A; Van Noordwijk M; Bräuning A
    Glob Chang Biol; 2017 Dec; 23(12):5436-5454. PubMed ID: 28712116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming.
    Cai W; Santoso A; Wang G; Weller E; Wu L; Ashok K; Masumoto Y; Yamagata T
    Nature; 2014 Jun; 510(7504):254-8. PubMed ID: 24919920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2015-16 floods and droughts in China, and its response to the strong El Niño.
    Ma F; Ye A; You J; Duan Q
    Sci Total Environ; 2018 Jun; 627():1473-1484. PubMed ID: 30857109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Southern Indian Ocean Dipole as a trigger for Central Pacific El Niño since the 2000s.
    Jo HS; Ham YG; Kug JS; Li T; Kim JH; Kim JG; Kim H
    Nat Commun; 2022 Nov; 13(1):6965. PubMed ID: 36379927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.
    Preethi B; Sabin TP; Adedoyin JA; Ashok K
    Sci Rep; 2015 Nov; 5():16653. PubMed ID: 26567458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014.
    Dong L; McPhaden MJ
    Sci Rep; 2018 Feb; 8(1):2249. PubMed ID: 29396441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of Indo-Pacific climate variability over the last millennium.
    Abram NJ; Wright NM; Ellis B; Dixon BC; Wurtzel JB; England MH; Ummenhofer CC; Philibosian B; Cahyarini SY; Yu TL; Shen CC; Cheng H; Edwards RL; Heslop D
    Nature; 2020 Mar; 579(7799):385-392. PubMed ID: 32188937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropical origins of the record-breaking 2020 summer rainfall extremes in East Asia.
    Kim S; Park JH; Kug JS
    Sci Rep; 2022 Mar; 12(1):5366. PubMed ID: 35354875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of the southwest Indian Ocean.
    de Ruijter WP; Ridderinkhof H; Schouten MW
    Philos Trans A Math Phys Eng Sci; 2005 Jan; 363(1826):63-76. PubMed ID: 15598623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 2015/2016 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/1983 and 1997/1998.
    Lim YK; Kovach RM; Pawson S; Vernieres G
    J Clim; 2017; 30():4819-4842. PubMed ID: 29962660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of seasonal predictability for summer climate over the Northwestern Pacific.
    Kosaka Y; Xie SP; Lau NC; Vecchi GA
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7574-9. PubMed ID: 23610388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of El Niño events on sea surface salinity over the central equatorial Indian Ocean.
    Yue W; Lin L; Xiaotong Z
    Environ Res; 2020 Mar; 182():109097. PubMed ID: 31911234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean.
    Tierney JE; Smerdon JE; Anchukaitis KJ; Seager R
    Nature; 2013 Jan; 493(7432):389-92. PubMed ID: 23325220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonstationary El Niño teleconnection on the post-summer upwelling off Vietnam.
    Wang YL; Wu CR
    Sci Rep; 2020 Aug; 10(1):13319. PubMed ID: 32770007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch.
    Abram NJ; Gagan MK; Liu Z; Hantoro WS; McCulloch MT; Suwargadi BW
    Nature; 2007 Jan; 445(7125):299-302. PubMed ID: 17230187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The meteorology of the Western Indian Ocean, and the influence of the East African Highlands.
    Slingo J; Spencer H; Hoskins B; Berrisford P; Black E
    Philos Trans A Math Phys Eng Sci; 2005 Jan; 363(1826):25-42. PubMed ID: 15598618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.