These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33798150)

  • 1. Method for exposure dose monitoring and control in scanning beam interference lithography.
    Song Y; Liu Y; Jiang S; Zhu Y; Zhang L; Liu Z
    Appl Opt; 2021 Apr; 60(10):2767-2774. PubMed ID: 33798150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate measurement and adjustment method for interference fringe direction in a scanning beam interference lithography system.
    Li Y; Jiang S; Chen X; Liu Z; Wang W; Song Y; Bayanheshig
    Opt Express; 2023 Aug; 31(17):28145-28160. PubMed ID: 37710876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active control technology of a diffraction grating wavefront by scanning beam interference lithography.
    Liu Z; Yang H; Li Y; Jiang S; Wang W; Song Y; Bayanheshig ; Li W
    Opt Express; 2021 Nov; 29(23):37066-37074. PubMed ID: 34808785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system.
    Chen X; Jiang S; Li Y; Jiang Y; Wang W; Bayanheshig
    Opt Express; 2022 Oct; 30(22):40842-40853. PubMed ID: 36299010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of diffraction grating profiles in fabrication by electron-beam lithography.
    Okano M; Kikuta H; Hirai Y; Yamamoto K; Yotsuya T
    Appl Opt; 2004 Sep; 43(27):5137-42. PubMed ID: 15473232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving grating duty cycle uniformity: amplitude-splitting flat-top beam laser interference lithography.
    Xue D; Deng X; Dun X; Wang J; Wang Z; Cheng X
    Appl Opt; 2024 Mar; 63(8):2065-2069. PubMed ID: 38568648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General mathematical model for the period chirp in interference lithography.
    Bienert F; Graf T; Ahmed MA
    Opt Express; 2023 Feb; 31(4):5334-5346. PubMed ID: 36823816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography.
    Li M; Xiang X; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(10):2641-2649. PubMed ID: 31045064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple spatially resolved period measurement of chirped pulse compression gratings.
    Bienert F; Röcker C; Graf T; Ahmed MA
    Opt Express; 2023 Jun; 31(12):19392-19403. PubMed ID: 37381355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency fused-silica reflection grism.
    Cao H; Zhou C; Ma J; Wu J; Li S
    Appl Opt; 2014 May; 53(13):2802-5. PubMed ID: 24921863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape memory of a polymer grating surface fabricated by two-beam interference lithography.
    Luo Y; Fang LN; Wei WH; Guan W; Dai YZ; Sun XC; Gao BR
    Appl Opt; 2022 Jan; 61(3):792-796. PubMed ID: 35200784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment.
    Ma D; Zhao Y; Zeng L
    Sci Rep; 2017 Apr; 7(1):926. PubMed ID: 28424475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wideband two-port beam splitter of a binary fused-silica phase grating.
    Wang B; Zhou C; Feng J; Ru H; Zheng J
    Appl Opt; 2008 Aug; 47(22):4004-8. PubMed ID: 18670555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference.
    Sreekanth KV; Chua JK; Murukeshan VM
    Appl Opt; 2010 Dec; 49(35):6710-7. PubMed ID: 21151227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of nano/micro dual-periodic structures by multi-beam evanescent wave interference lithography using spatial beats.
    Masui S; Torii Y; Michihata M; Takamasu K; Takahashi S
    Opt Express; 2019 Oct; 27(22):31522-31531. PubMed ID: 31684386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography.
    Shiono T; Hamamoto T; Takahara K
    Appl Opt; 2002 May; 41(13):2390-3. PubMed ID: 12009146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of tunable diffraction grating by imprint lithography with photoresist mold.
    Yamada I; Ikeda Y; Higuchi T
    Rev Sci Instrum; 2018 May; 89(5):053110. PubMed ID: 29864802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method.
    Li X; Ni K; Zhou Q; Wang X; Tian R; Pang J
    Opt Express; 2016 May; 24(10):10759-66. PubMed ID: 27409896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.