BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33798172)

  • 1. Isotopic gas analysis by means of mid-infrared photoacoustic spectroscopy targeting human exhaled air.
    Lassen M; Christensen JB; Balslev-Harder D; Petersen JC
    Appl Opt; 2021 Apr; 60(10):2907-2911. PubMed ID: 33798172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Photonic Sensors Based on Interband Cascade Lasers for Real-Time Mouse Breath Analysis.
    Tütüncü E; Nägele M; Becker S; Fischer M; Koeth J; Wolf C; Köstler S; Ribitsch V; Teuber A; Gröger M; Kress S; Wepler M; Wachter U; Vogt J; Radermacher P; Mizaikoff B
    ACS Sens; 2018 Sep; 3(9):1743-1749. PubMed ID: 30074387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive individual methane measurement in dairy cows.
    Negussie E; Lehtinen J; Mäntysaari P; Bayat AR; Liinamo AE; Mäntysaari EA; Lidauer MH
    Animal; 2017 May; 11(5):890-899. PubMed ID: 28007048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator.
    Peltola J; Vainio M; Hieta T; Uotila J; Sinisalo S; Metsälä M; Siltanen M; Halonen L
    Opt Express; 2013 Apr; 21(8):10240-50. PubMed ID: 23609733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics.
    Selvaraj R; Vasa NJ; Nagendra SMS; Mizaikoff B
    Molecules; 2020 May; 25(9):. PubMed ID: 32397389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-Resonance Photoacoustic Spectroscopy Technique for Multi-Gas Sensing in Biogas Plants.
    Selvaraj R; Vasa NJ; Shiva Nagendra SM
    Anal Chem; 2019 Nov; 91(22):14239-14246. PubMed ID: 31648517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time measurement of CO
    Zhou T; Wu T; Wu Q; Ye C; Hu R; Chen W; He X
    Opt Express; 2020 Apr; 28(8):10970-10980. PubMed ID: 32403618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy.
    Kistenev YV; Borisov AV; Kuzmin DA; Penkova OV; Kostyukova NY; Karapuzikov AA
    J Biomed Opt; 2017 Jan; 22(1):17002. PubMed ID: 28122081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared dual-gas CH
    Ye W; Xia Z; Hu L; Luo W; Liu W; Xu X; Zheng C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121908. PubMed ID: 36174401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile photoacoustic spectrometer based on a mid-infrared pulsed optical parametric oscillator.
    Lamard L; Balslev-Harder D; Peremans A; Petersen JC; Lassen M
    Appl Opt; 2019 Jan; 58(2):250-256. PubMed ID: 30645301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity biomedical sensor based on photoacoustic and cavity enhanced absorption spectroscopy with a new software platform for breath analysis.
    Bayrakli I; Akman H; Sari F
    Appl Opt; 2021 Mar; 60(7):2093-2099. PubMed ID: 33690303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber-Coupled Quartz-Enhanced Photoacoustic Spectroscopy System for Methane and Ethane Monitoring in the Near-Infrared Spectral Range.
    Menduni G; Sgobba F; Russo SD; Ranieri AC; Sampaolo A; Patimisco P; Giglio M; Passaro VMN; Csutak S; Assante D; Ranieri E; Geoffrion E; Spagnolo V
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate exhaled breath ammonia measurement.
    Solga SF; Mudalel ML; Spacek LA; Risby TH
    J Vis Exp; 2014 Jun; (88):. PubMed ID: 24962141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath.
    Hanf S; Bögözi T; Keiner R; Frosch T; Popp J
    Anal Chem; 2015 Jan; 87(2):982-8. PubMed ID: 25545503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of patients with bronchopulmonary diseases using methods of infrared laser photoacoustic spectroscopy and principal component analysis.
    Kistenev YV; Karapuzikov AI; Kostyukova NY; Starikova MK; Boyko AA; Bukreeva EB; Bulanova AA; Kolker DB; Kuzmin DA; Zenov KG; Karapuzikov AA
    J Biomed Opt; 2015 Jun; 20(6):065001. PubMed ID: 26039381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate Analysis of Photoacoustic Spectra for the Detection of Short-Chained Hydrocarbon Isotopologues.
    Loh A; Wolff M
    Molecules; 2020 May; 25(9):. PubMed ID: 32403410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of endogenous methane formation by photoacoustic spectroscopy.
    Tuboly E; Szabó A; Erős G; Mohácsi A; Szabó G; Tengölics R; Rákhely G; Boros M
    J Breath Res; 2013 Dec; 7(4):046004. PubMed ID: 24185326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QEPAS sensor in a butterfly package and its application.
    Milde T; Hoppe M; Tatenguem H; Rohling H; Schmidtmann S; Honsberg M; Schade W; Sacher J
    Appl Opt; 2021 May; 60(15):C55-C59. PubMed ID: 34143106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Photoacoustic spectroscopy evaluation of the impact of smoking on the composition of exhaled air in patients with bronchopulmonary diseases].
    Bukreeva EB; Bulanova AA; Kistenev YV; Nikiforova OY
    Ter Arkh; 2017; 89(3):34-37. PubMed ID: 28378727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and Highly Sensitive NO
    Pan Y; Dong L; Yin X; Wu H
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.