BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 33798195)

  • 1. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia.
    Tang S; Buchman AS; De Jager PL; Bennett DA; Epstein MP; Yang J
    PLoS Genet; 2021 Apr; 17(4):e1009482. PubMed ID: 33798195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics.
    Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J
    Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 93 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    medRxiv; 2023 Jul; ():. PubMed ID: 37503151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits.
    Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J
    Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies.
    Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W
    Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8.
    Parrish RL; Gibson GC; Epstein MP; Yang J
    HGG Adv; 2022 Jan; 3(1):100068. PubMed ID: 35047855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some statistical consideration in transcriptome-wide association studies.
    Xue H; Pan W;
    Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous test and estimation of total genetic effect in eQTL integrative analysis through mixed models.
    Wang T; Qiao J; Zhang S; Wei Y; Zeng P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35212359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies.
    Zeng P; Dai J; Jin S; Zhou X
    Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits.
    Knutson KA; Pan W
    Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
    Head ST; Dezem F; Todor A; Yang J; Plummer J; Gayther S; Kar S; Schildkraut J; Epstein MP
    Am J Hum Genet; 2024 Jun; 111(6):1084-1099. PubMed ID: 38723630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia.
    Wu C; Pan W
    Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression.
    Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI
    Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Powerful Framework for Integrating eQTL and GWAS Summary Data.
    Xu Z; Wu C; Wei P; Pan W
    Genetics; 2017 Nov; 207(3):893-902. PubMed ID: 28893853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-tissue neocortical transcriptome-wide association study implicates 8 genes across 6 genomic loci in Alzheimer's disease.
    Gockley J; Montgomery KS; Poehlman WL; Wiley JC; Liu Y; Gerasimov E; Greenwood AK; Sieberts SK; Wingo AP; Wingo TS; Mangravite LM; Logsdon BA
    Genome Med; 2021 May; 13(1):76. PubMed ID: 33947463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data.
    Zhang J; Xie S; Gonzales S; Liu J; Wang X
    Genet Epidemiol; 2020 Sep; 44(6):550-563. PubMed ID: 32350919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.