BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33798433)

  • 1. Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos.
    Springer MS; Guerrero-Juarez CF; Huelsmann M; Collin MA; Danil K; McGowen MR; Oh JW; Ramos R; Hiller M; Plikus MV; Gatesy J
    Curr Biol; 2021 May; 31(10):2124-2139.e3. PubMed ID: 33798433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippopotamus and whale phylogeny.
    Geisler JH; Theodor JM
    Nature; 2009 Mar; 458(7236):E1-4; discussion E5. PubMed ID: 19295550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin.
    Orliac M; Boisserie JR; Maclatchy L; Lihoreau F
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11871-6. PubMed ID: 20547829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen.
    Gatesy J
    Mol Biol Evol; 1997 May; 14(5):537-43. PubMed ID: 9159931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The position of Cetacea within mammalia: phylogenetic analysis of morphological data from extinct and extant taxa.
    O'Leary MA; Geisler JH
    Syst Biol; 1999 Sep; 48(3):455-90. PubMed ID: 12066291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls.
    Gatesy J; Hayashi C; Cronin MA; Arctander P
    Mol Biol Evol; 1996 Sep; 13(7):954-63. PubMed ID: 8752004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forelimb myology of the pygmy hippopotamus (Choeropsis liberiensis).
    Fisher RE; Scott KM; Naples VL
    Anat Rec (Hoboken); 2007 Jun; 290(6):673-93. PubMed ID: 17516432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The position of Hippopotamidae within Cetartiodactyla.
    Boisserie JR; Lihoreau F; Brunet M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1537-41. PubMed ID: 15677331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution.
    Spaulding M; O'Leary MA; Gatesy J
    PLoS One; 2009 Sep; 4(9):e7062. PubMed ID: 19774069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Common Hippopotamus (Artiodactyla) and Mysticete (Cetacea) Nostrils: An Open and Shut Case.
    Maust-Mohl M; Reiss D; Reidenberg JS
    Anat Rec (Hoboken); 2019 May; 302(5):693-702. PubMed ID: 30450771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the MC5R gene in placental mammals with evidence for its inactivation in multiple lineages that lack sebaceous glands.
    Springer MS; Gatesy J
    Mol Phylogenet Evol; 2018 Mar; 120():364-374. PubMed ID: 29277542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamoidea, Cetancodonta, Cetartiodactyla).
    Boisserie JR; Fisher RE; Lihoreau F; Weston EM
    Biol Rev Camb Philos Soc; 2011 Aug; 86(3):601-25. PubMed ID: 20946539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene duplications and gene loss in the epidermal differentiation complex during the evolutionary land-to-water transition of cetaceans.
    Holthaus KB; Lachner J; Ebner B; Tschachler E; Eckhart L
    Sci Rep; 2021 Jun; 11(1):12334. PubMed ID: 34112911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations.
    Huelsmann M; Hecker N; Springer MS; Gatesy J; Sharma V; Hiller M
    Sci Adv; 2019 Sep; 5(9):eaaw6671. PubMed ID: 31579821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa.
    Lihoreau F; Boisserie JR; Manthi FK; Ducrocq S
    Nat Commun; 2015 Feb; 6():6264. PubMed ID: 25710445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated evolution and diversifying selection drove the adaptation of cetacean bone microstructure.
    Sun D; Zhou X; Yu Z; Xu S; Seim I; Yang G
    BMC Evol Biol; 2019 Oct; 19(1):194. PubMed ID: 31651232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans.
    Chen Z; Wang Z; Xu S; Zhou K; Yang G
    BMC Evol Biol; 2013 Feb; 13():34. PubMed ID: 23394579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls.
    Thewissen JG; Williams EM; Roe LJ; Hussain ST
    Nature; 2001 Sep; 413(6853):277-81. PubMed ID: 11565023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.
    Shen T; Xu S; Wang X; Yu W; Zhou K; Yang G
    BMC Evol Biol; 2012 Mar; 12():39. PubMed ID: 22443485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive Selection and Inactivation in the Vision and Hearing Genes of Cetaceans.
    McGowen MR; Tsagkogeorga G; Williamson J; Morin PA; Rossiter ASJ
    Mol Biol Evol; 2020 Jul; 37(7):2069-2083. PubMed ID: 32170943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.