BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 33798642)

  • 1. The past, present, and future of breast cancer models for nanomedicine development.
    Boix-Montesinos P; Soriano-Teruel PM; Armiñán A; Orzáez M; Vicent MJ
    Adv Drug Deliv Rev; 2021 Jun; 173():306-330. PubMed ID: 33798642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages.
    Yu W; Hu C; Gao H
    Adv Drug Deliv Rev; 2021 Nov; 178():113909. PubMed ID: 34352354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current understandings and clinical translation of nanomedicines for breast cancer therapy.
    Jiang Y; Jiang Z; Wang M; Ma L
    Adv Drug Deliv Rev; 2022 Jan; 180():114034. PubMed ID: 34736986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-functionalization, a Promising Adaptation to Overcome Challenges to Clinical Translation of Nanomedicines as Nano-diagnostics and Nano-therapeutics for Breast Cancer.
    Moti LAA; Hussain Z; Thu HE; Khan S; Sohail M; Sarfraz RM
    Curr Pharm Des; 2021; 27(43):4356-4375. PubMed ID: 34459374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomedicine therapeutic approaches to overcome cancer drug resistance.
    Markman JL; Rekechenetskiy A; Holler E; Ljubimova JY
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1866-79. PubMed ID: 24120656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.
    Bar-Zeev M; Livney YD; Assaraf YG
    Drug Resist Updat; 2017 Mar; 31():15-30. PubMed ID: 28867241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart cancer nanomedicine.
    van der Meel R; Sulheim E; Shi Y; Kiessling F; Mulder WJM; Lammers T
    Nat Nanotechnol; 2019 Nov; 14(11):1007-1017. PubMed ID: 31695150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DePEGylation strategies to increase cancer nanomedicine efficacy.
    Kong L; Campbell F; Kros A
    Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomedicine Tumor Targeting.
    Lammers T
    Adv Mater; 2024 Jun; 36(26):e2312169. PubMed ID: 38361435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-guided nanomedicines for anticancer drug delivery.
    Alshaer W; Hillaireau H; Fattal E
    Adv Drug Deliv Rev; 2018 Sep; 134():122-137. PubMed ID: 30267743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotargeted agents: an emerging therapeutic strategy for breast cancer.
    Du M; Ouyang Y; Meng F; Ma Q; Liu H; Zhuang Y; Pang M; Cai T; Cai Y
    Nanomedicine (Lond); 2019 Jul; 14(13):1771-1786. PubMed ID: 31298065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting.
    Ren L; Feng W; Shao J; Ma J; Xu M; Zhu BZ; Zheng N; Liu S
    Theranostics; 2020; 10(14):6384-6398. PubMed ID: 32483459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine.
    Pearce AK; O'Reilly RK
    Bioconjug Chem; 2019 Sep; 30(9):2300-2311. PubMed ID: 31441642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines.
    Ladaycia A; Loretz B; Passirani C; Lehr CM; Lepeltier E
    Adv Drug Deliv Rev; 2021 Mar; 170():44-70. PubMed ID: 33388279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles.
    Abreu TR; Biscaia M; Gonçalves N; Fonseca NA; Moreira JN
    Adv Exp Med Biol; 2021; 1295():271-299. PubMed ID: 33543464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures.
    Saravanakumar K; Anbazhagan S; Pujani Usliyanage J; Vishven Naveen K; Wijesinghe U; Xiaowen H; Vishnu Priya V; Thiripuranathar G; Wang MH
    Int Immunopharmacol; 2022 Feb; 103():108433. PubMed ID: 34922248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy.
    Afzal M; Ameeduzzafar ; Alharbi KS; Alruwaili NK; Al-Abassi FA; Al-Malki AAL; Kazmi I; Kumar V; Kamal MA; Nadeem MS; Aslam M; Anwar F
    Semin Cancer Biol; 2021 Feb; 69():279-292. PubMed ID: 31870940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.