These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 33798642)

  • 21. Organoids technology for advancing the clinical translation of cancer nanomedicine.
    Zhao DK; Liang J; Huang XY; Shen S; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1892. PubMed ID: 37088100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid-based drug delivery systems for cancer treatment.
    Arias JL; Clares B; Morales ME; Gallardo V; Ruiz MA
    Curr Drug Targets; 2011 Jul; 12(8):1151-65. PubMed ID: 21443475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy.
    Yu H; Li JM; Deng K; Zhou W; Wang CX; Wang Q; Li KH; Zhao HY; Huang SW
    Theranostics; 2019; 9(23):7033-7050. PubMed ID: 31660085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination antitumor therapy with targeted dual-nanomedicines.
    Dai W; Wang X; Song G; Liu T; He B; Zhang H; Wang X; Zhang Q
    Adv Drug Deliv Rev; 2017 Jun; 115():23-45. PubMed ID: 28285944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.
    van Elk M; Murphy BP; Eufrásio-da-Silva T; O'Reilly DP; Vermonden T; Hennink WE; Duffy GP; Ruiz-Hernández E
    Int J Pharm; 2016 Dec; 515(1-2):132-164. PubMed ID: 27725268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor-targeted nanomedicines for cancer theranostics.
    Arranja AG; Pathak V; Lammers T; Shi Y
    Pharmacol Res; 2017 Jan; 115():87-95. PubMed ID: 27865762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review.
    Chan WJ; Li H
    Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38086099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures.
    He H; Liu L; Morin EE; Liu M; Schwendeman A
    Acc Chem Res; 2019 Sep; 52(9):2445-2461. PubMed ID: 31424909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research progress of novel inorganic nanometre materials carriers in nanomedicine for cancer diagnosis and treatment.
    Xu J; Liao K; Jiang H; Zhou W
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S492-S502. PubMed ID: 30449177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological rationale for the design of polymeric anti-cancer nanomedicines.
    Zhou Y; Kopeček J
    J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review.
    Fathi-Karkan S; Arshad R; Rahdar A; Ramezani A; Behzadmehr R; Ghotekar S; Pandey S
    Eur J Med Chem; 2023 Nov; 259():115676. PubMed ID: 37499287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells.
    Gener P; Gouveia LP; Sabat GR; de Sousa Rafael DF; Fort NB; Arranja A; Fernández Y; Prieto RM; Ortega JS; Arango D; Abasolo I; Videira M; Schwartz S
    Nanomedicine; 2015 Nov; 11(8):1883-92. PubMed ID: 26238079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.
    Palazzolo S; Bayda S; Hadla M; Caligiuri I; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4224-4268. PubMed ID: 28875844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances.
    Miller-Kleinhenz JM; Bozeman EN; Yang L
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(6):797-816. PubMed ID: 25966677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies of engineering nanomedicines for tumor retention.
    Qian X; Xu X; Wu Y; Wang J; Li J; Chen S; Wen J; Li Y; Zhang Z
    J Control Release; 2022 Jun; 346():193-211. PubMed ID: 35447297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy.
    Yang K; Yang Z; Yu G; Nie Z; Wang R; Chen X
    Adv Mater; 2022 Feb; 34(6):e2107434. PubMed ID: 34693571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomedicine: de novo design of nanodrugs.
    Yang Z; Kang SG; Zhou R
    Nanoscale; 2014 Jan; 6(2):663-77. PubMed ID: 24305636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.