These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 337988)

  • 1. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. III: Blockade of the autonomic nervous system.
    Baker AB; Cowie RW; Colliss JE
    Br J Anaesth; 1977 Dec; 49(12):1235-7. PubMed ID: 337988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. I: Introduction and methods.
    Baker AB; Babington PC; Colliss JE; Cowie RW
    Br J Anaesth; 1977 Dec; 49(12):1207-20. PubMed ID: 337986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. II: Various physiological variables.
    Baker AB; Colliss JE; Cowie RW
    Br J Anaesth; 1977 Dec; 49(12):1221-34. PubMed ID: 337987
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation: emphysema.
    Baker AB; Restall R; Clark BW
    Br J Anaesth; 1982 May; 54(5):547-54. PubMed ID: 6803817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of airway pressure waveform on cardiac output during positive pressure ventilation of healthy newborn dogs.
    Reller MD; Donovan EF; Kotagal UR
    Pediatr Res; 1985 Apr; 19(4):337-41. PubMed ID: 3889813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation: pulmonary oedema.
    Baker AB; Thompson JB; Turner J; Hansen P
    Br J Anaesth; 1982 May; 54(5):539-46. PubMed ID: 7041932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies in pericardial function. I. Cardiovascular effects of assisted ventilation, thoracotomy and pericardiectomy in the anesthetized dog.
    Weisse AB; Vijayachandra Nair S; Jaferi GA
    Cardiology; 1975; 60(2):75-85. PubMed ID: 1102089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inspiratory pressure oscillation on pulmonary gas exchange and circulatory functions in anesthetized, mechanically ventilated dogs.
    Tsuji C; Kondo T; Kurata T; Kuwahira I; Ohta Y
    Tokai J Exp Clin Med; 1982 Sep; 7(5):575-82. PubMed ID: 6820733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the cardiorespiratory effects of continuous positive airway pressure breathing and continuous positive pressure ventilation in dogs.
    Scott A; Hill AE; Chakrabarti MK; Carruthers B
    Br J Anaesth; 1978 Apr; 50(4):331-8. PubMed ID: 350246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of variations of inspiratory flow waveform on cardiorespiratory function during controlled ventilation in normo-, hypo- and hypervolaemic dogs.
    Adams AP; Economides AP; Finlay WE; Sykes MK
    Br J Anaesth; 1970 Oct; 42(10):818-25. PubMed ID: 4920120
    [No Abstract]   [Full Text] [Related]  

  • 11. Cardiorespiratory effects of high frequency intermittent positive pressure ventilation in the dog.
    Chakrabarti MK; Sykes MK
    Br J Anaesth; 1980 May; 52(5):475-82. PubMed ID: 6770880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent mandatory ventilation; is synchronization important?
    Heenan TJ; Downs JB; Douglas ME; Ruiz BC; Jumper L
    Chest; 1980 May; 77(5):598-602. PubMed ID: 6767582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular effects of positive end-expiratory pressure in dogs.
    Cassidy SS; Robertson CH; Pierce AK; Johnson RL
    J Appl Physiol Respir Environ Exerc Physiol; 1978 May; 44(5):743-50. PubMed ID: 348658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inspiratory flow waveforms on lung mechanics, gas exchange, and respiratory metabolism in COPD patients during mechanical ventilation.
    Yang SC; Yang SP
    Chest; 2002 Dec; 122(6):2096-104. PubMed ID: 12475853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency positive-pressure ventilation (HFPPV): what role in ventilatory insufficiency?
    Kirby RR
    Anesthesiology; 1980 Feb; 52(2):109-10. PubMed ID: 6986102
    [No Abstract]   [Full Text] [Related]  

  • 16. Sympathetic influence on alveolar surface activity in hyperventilated dog.
    Kobayashi T; Kishizuchi S; Murakami S
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Mar; 44(3):327-32. PubMed ID: 344292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical considerations for the use of a pulmonary artery thermistor catheter.
    Woods M; Scott RN; Harken AH
    Surgery; 1976 Apr; 79(4):469-75. PubMed ID: 769224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulatory effects of deep inspirations, blocked expirations and positive pressure inflations at equal transpulmonary pressures in conscious dogs.
    Charlier AA; Jaumin PM; Pouleur H
    J Physiol; 1974 Sep; 241(3):589-605. PubMed ID: 4612133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of pulmonary reflexes in ventilation and respiratory control of acutely obstructed dogs during assisted ventilation.
    Mohsenifar Z; Campisi D; Simmons DH
    Lung; 1980; 158(1):1-8. PubMed ID: 6772884
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of pattern of ventilation on pulmonary metabolism and mechanics.
    Thornton D; Ponhold H; Butler J; Morgan T; Cheney FW
    Anesthesiology; 1975 Jan; 42(1):4-10. PubMed ID: 1089369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.