These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33798864)

  • 1. Miscanthus as a carbon precursor for graphene oxide: A possibility influenced by pyrolysis temperature.
    Yan Y; Meng Y; Zhao H; Lester E; Wu T; Pang CH
    Bioresour Technol; 2021 Jul; 331():124934. PubMed ID: 33798864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miscanthus biochar value chain - A review.
    Pidlisnyuk V; Newton RA; Mamirova A
    J Environ Manage; 2021 Jul; 290():112611. PubMed ID: 33892232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste.
    Xia S; Xiao H; Liu M; Chen Y; Yang H; Chen H
    Bioresour Technol; 2018 Dec; 270():189-197. PubMed ID: 30218935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis.
    Mafu LD; Neomagus HWJP; Everson RC; Strydom CA; Carrier M; Okolo GN; Bunt JR
    Bioresour Technol; 2017 Nov; 243():941-948. PubMed ID: 28738549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application.
    Pariyar P; Kumari K; Jain MK; Jadhao PS
    Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous and low-carbon production of biomass flash graphene.
    Zhu X; Lin L; Pang M; Jia C; Xia L; Shi G; Zhang S; Lu Y; Sun L; Yu F; Gao J; He Z; Wu X; Li A; Wang L; Wang M; Cao K; Fu W; Chen H; Li G; Zhang J; Wang Y; Yang Y; Zhu YG
    Nat Commun; 2024 Apr; 15(1):3218. PubMed ID: 38622151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment.
    Tran HN; Lee CK; Nguyen TV; Chao HP
    Environ Technol; 2018 Nov; 39(21):2747-2760. PubMed ID: 28791934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance.
    Chen Y; Zhang X; Chen W; Yang H; Chen H
    Bioresour Technol; 2017 Dec; 246():101-109. PubMed ID: 28893501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pilot-scale biomass pyrolytic poly-generation plant performance study and self-sufficiency assessment.
    Cong H; Zhao L; Mašek O; Yao Z; Meng H; Huo L; Ma T; Hu E
    Bioresour Technol; 2019 Feb; 273():439-445. PubMed ID: 30466022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method.
    Yan Y; Manickam S; Lester E; Wu T; Pang CH
    Ultrason Sonochem; 2021 May; 73():105519. PubMed ID: 33799111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil.
    Mandal S; Pu S; He L; Ma H; Hou D
    Environ Pollut; 2020 Apr; 259():113851. PubMed ID: 31918134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of the effect of pyrolysis process parameters on biochar stability.
    Leng L; Huang H
    Bioresour Technol; 2018 Dec; 270():627-642. PubMed ID: 30220436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes.
    Machado LMM; Lütke SF; Perondi D; Godinho M; Oliveira MLS; Collazzo GC; Dotto GL
    Waste Manag; 2020 Jul; 113():96-104. PubMed ID: 32526638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview on engineering the surface area and porosity of biochar.
    Leng L; Xiong Q; Yang L; Li H; Zhou Y; Zhang W; Jiang S; Li H; Huang H
    Sci Total Environ; 2021 Apr; 763():144204. PubMed ID: 33385838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace metal elements mediated co-pyrolysis of biomass and bentonite for the synthesis of biochar with high stability.
    Yu J; Wu Z; An X; Tian F; Yu B
    Sci Total Environ; 2021 Jun; 774():145611. PubMed ID: 33607429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.