These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 33798962)
1. 3D bioprinted neural tissue constructs for spinal cord injury repair. Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962 [TBL] [Abstract][Full Text] [Related]
2. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair. Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129 [TBL] [Abstract][Full Text] [Related]
3. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. Song S; Li Y; Huang J; Cheng S; Zhang Z Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714 [TBL] [Abstract][Full Text] [Related]
4. Innovative Strategies in 3D Bioprinting for Spinal Cord Injury Repair. Kim DY; Liu Y; Kim G; An SB; Han I Int J Mol Sci; 2024 Sep; 25(17):. PubMed ID: 39273538 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinting approaches for spinal cord injury repair. Jiu J; Liu H; Li D; Li J; Liu L; Yang W; Yan L; Li S; Zhang J; Li X; Li JJ; Wang B Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38569491 [TBL] [Abstract][Full Text] [Related]
6. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury. Lu D; Yang Y; Zhang P; Ma Z; Li W; Song Y; Feng H; Yu W; Ren F; Li T; Zeng H; Wang J Tissue Eng Regen Med; 2022 Dec; 19(6):1113-1127. PubMed ID: 35767151 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Bedir T; Ulag S; Ustundag CB; Gunduz O Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110741. PubMed ID: 32204049 [TBL] [Abstract][Full Text] [Related]
8. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156 [TBL] [Abstract][Full Text] [Related]
9. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
10. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
11. Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Bocheng X; França R Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39260389 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Hamid OA; Eltaher HM; Sottile V; Yang J Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866 [TBL] [Abstract][Full Text] [Related]
13. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Zarepour A; Hooshmand S; Gökmen A; Zarrabi A; Mostafavi E Cells; 2021 Nov; 10(11):. PubMed ID: 34831412 [TBL] [Abstract][Full Text] [Related]
14. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
15. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration. Hsieh FY; Hsu SH Organogenesis; 2015; 11(4):153-8. PubMed ID: 26709633 [TBL] [Abstract][Full Text] [Related]
17. Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Haring AP; Thompson EG; Tong Y; Laheri S; Cesewski E; Sontheimer H; Johnson BN Biofabrication; 2019 Feb; 11(2):025009. PubMed ID: 30695770 [TBL] [Abstract][Full Text] [Related]
18. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Amaral AJR; Gaspar VM; Lavrador P; Mano JF Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894 [TBL] [Abstract][Full Text] [Related]
19. Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. Song S; Liu X; Huang J; Zhang Z Biomater Adv; 2022 Feb; 133():112639. PubMed ID: 35527143 [TBL] [Abstract][Full Text] [Related]
20. Production of a Bioink Containing Decellularized Spinal Cord Tissue for 3D Bioprinting. Santos MGD; França FS; Prestes JP; Teixeira C; Sommer LC; Sperling LE; Pranke P Tissue Eng Part A; 2024 Jan; 30(1-2):61-74. PubMed ID: 37772706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]